Or

- (b) Write notes on:
 - (i) Scattering by free electron
 - (ii) Electric dipole radiation.
- (a) Derive the expressions for electric and magnetic field produce due to accelerated charge particle at low velocity.

Or

(b) Discuss the equilibrium between an oscillator and a radiation field. Derive the necessary mathematical derivation.

2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(CLASSICAL ELECTRODYNAMICS)

SECTION - A

1. Answer any four questions:

 4×4

- (a) What do you mean by multipole radiation?
- (b) Explain the Lienard-Wiechart potential for a relativistic charge particle.
- (c) What is Bremsstrahlung? Explain.
- (d) What do you mean by Rayleigh-Scattering?

- (e) State Maxwell's field equations for electromagnetic waves and reduce in terms of electromagnetic potentials.
- (f) Write notes on Fourier analysis.

Or

Answer all questions :

 2×8

- (a) What is the physical significance of dispersion relation?
- (b) What is Cherenkov radiation?
- (c) Define electromagnetic potentials?
- (d) What is wave guide?
- (e) Define radiation energy.
- (f) Explain concept of virtual photon.
- (g) What is difference in Thomson and Raman Scattering?
- (h) How X-ray are produced?

SECTION - B

Answer all questions:

 16×4

 (a) Using the multipole expension often the spherical components of electric field.

Or

- (b) Derive the expressions of the Lienard -Wiechart potentials and fields for a point charge.
- 4. (a) Derive and expression for computing radiation fields using Hertz method.

Or

- (b) Derive the expressions for electric and magnetic field due to uniformly moving electron using field equations.
- (a) Discuss the propagation of electromagnetic waves in regtangular waves guide. Hence derive the necessary dispersion relation.