2018

Time: 3 hours

Full Marks: 80

Answer from both the Sections as directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(ORGANIC CHEMISTRY-II)

SECTION - A

- 1. Answer any four of the following:
 - (a) What is SE₂ reaction. Explain with suitable examples.
 - (b) Give evidence to show that Aromatic Electrophilic Substitution is a two step process and that the removal of proton is not the rate determining step.

4 × 4

- (c) Compare the reductions using LiAlH4 and sodium borohydride.
- (d) Outline the mechanism for the following reaction:

(e) Identify 'A' and outline the mechanism of the following addition reaction:

$$\bigcirc + CHCl_3 \xrightarrow{(PbCl_2)_2} A$$

(f) Discuss Reimer-Tiemann reaction. Outline its mechanism.

Or

- Answer all questions from the following: 2×8
 - (a) Give major product of the following reaction:

$$\begin{array}{c}
CH_2 - CH_2 - CH_3 \\
\hline
HBr
\end{array}$$

- (b) Explain why the bromination of toluene is five time faster than that of o-butylbenzene.
- (c) Give reagents for the following conversion:

$$C_6H_5CN \longrightarrow C_6H_5CHO$$

- (d) Alkynes are less reactive than alkenes for electrophilic addition reaction. Explain.
- (e) NaBH, reduces aldehyde group more readily than Keto group. Explain.
- (f) Predict the organic product :

M.Sc. - Chem-IIS (406)

$$CH_3 - C - CH_3 + HO - CH_2 - CH_2 - NH_2 \xrightarrow{H/Pt} ?$$

(g) How will you bring about the following conversion:

$$\bigcirc$$
-COOH $\stackrel{?}{\longrightarrow}$

(h) Give major product of the following reaction:

SECTION - B

Answer all questions:

 16×4

(Continued)

- (a) (i) What are sigma and π complexes?
 Discuss their role in aromatic electrophilic substitution.
 - (ii) In the following pairs of ions, which will be the better leaving group in aliphatic electrophilic substitutions?
 - (I) tBu and Me
 - (II) I and I
 - (III) H and D
 - (IV) Me and MeO

(iii) Explain why CHCl₃ is more reactive than CHF₃ in SE₁ rection.

Or

(b) Write notes on:

4+4+4+4

- (i) Activating and Deactivating group
- (ii) Ortho-para directors
- (iii) Ortho-para ratio
- (iv) Arenium ion mechanism.
- 4. (a) (i) Disciss mechanism of Free radical substitution at bridge head. Describe coupling of Alkynes and its mechanism. 8
 - (ii) What is Sommelet-Hauser rearrangement? Explain with mechanism. 8

Or

(b) Write notes on:

5 + 6 + 5

(i) Differentiate between ArSN₁ and ArSN₂ reactions (ii) Benzyne mechanism in ArSN reactions

(iii) Arylation of aromatic compounds by diazonium salts

5. (a) (i) Give the product of each of the following reactions: 2×4

(I)

$$CH_3-CH=CH-CH=CH_2+CH=CH \xrightarrow{\Delta}$$
?

(II)

$$CH_3-CH-CH-CH-CH_3+CH-CH \xrightarrow{\Delta}$$
?

(III)
$$CH_2=CH-CH=CH_2+CH_2=CH-CH=CH_2\xrightarrow{\Delta}?$$

$$(IV)$$
 CH_2 = CH - C = CH_2 + HOOC- C = C -COOH $\xrightarrow{\Delta}$?

(ii) Write notes on:

4×2

- (1) Mechanism of E₂ reactions
- (II) Poterson elimination reactions.

Or

(b) Write short notes on:

4 × 4

- (i) Effect of structure of substrate, strength of the base and nature of the leaving group in E₁ reactions
- (ii) Peterson elimination reactions
- (iii) Comparision between E1, E2 and E1cb reactions
- (iv) What is Michael addition reaction?
 Give examples.
- 6. (a) (i) Indicate the expected products of the following reaction: 2 x 4

M.Sc.-Chem-IIS(406)

$$C_6H_5 - C - CH_2 - CH_2 - C - CH_3 \xrightarrow{\text{(i) NaBH}_4} C + CH_2 - C + CH_3 \xrightarrow{\text{(ii) HOH/H}^{\oplus}} C$$

(III)
$$CH_3CH = CH - COOC_2O_5 \xrightarrow{LiAlH_4} ?$$

- (ii) Write short notes on:
- 2+2+2+2
- (I) Oxidations of amines
- (II) Oxidation of ketones
- (III) Reduction of esters
- (IV) Reduction of alcohols.

Or

(b) (i) How will you bring about the following conversions: 2×4

- (I) Acid chloride to Aldehyde
- (II) Ester to Aldehyde
- (III) Anhydroxide to Primary alcohol
- (IV) Carboxylic acid to primary alcohol.
- (ii) Give synthetic applications of the following reagents: 2×4
 - (I) Moist Silver Oxide
 - (II) SeO₂
 - (III) Lead Tetra Acetate
 - (IV) Grignard reagents.