Registration No.:								
Total number of pri	inted	page	es – 3	}				B. Tech
								BS 1103

First Semester Examination - 2012-13

CHEMISTRY - I

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer all parts of a question at one place only.

(Standard data : h =
$$6.626 \times 10^{-34}$$
 Js, c = 3×10^8 ms⁻¹, m_e = 9.1×10^{-31} kg, N = 6.023×10^{23} mol⁻¹, R = 8.314 JK⁻¹mol⁻¹, k = 1.38×10^{-23} JK⁻¹ molecule⁻¹)

Answer the following questions :

2×10

- (a) What is the de-Broglie wavelength of an electron travelling at 1% of the speed of light?
- (b) Give the unit of rate constant of a second order reaction with example.
- (c) Identify the catalyst and promoter in the following reaction 5/3

$$ZnO, Cr_2O_3$$
 $CO_2(g) + H_2(g) \rightarrow CH_3OH(I)$
 $250^{\circ}C$

(d) Write the decreasing order of stability for the following:

$$H_2$$
, H_2^+ , H_2^- and justify

(e) Write the Nernst equation for the electrode reaction,

$$Mn^+(aq) + ne \rightarrow M(s)$$

(f) Calculate the number of components and degree of freedom for

$$N_2(g) + O_2(g) \to 2NO(g).$$

(g)	Calculate the activation energy of a chemical reaction which doubles the rate when the temperature is raised from 300 K to 310 K.
(h)	NaCl has FCC structure. How many Na^+ and Cl^- ions are there in the unit cell ?

- (i) What is the significance of writing + or (minus) sign before the rate of reaction?
- (j) State and explain Hess's law.
- (a) Write down the molecular orbital configuration for O₂, O₂ and O₂.
 Compare their bond lengths and magnetic characteristics.
 - (b) The unit cell of nickel is a face-centered cube of volume 0.0438 mm³. Find the atomic radius of nickel.
 3
 - (c) Write the cell reactions of lead-acid storage cell during charging and discharging process.
- (a) With the help of the Phase rule, draw and describe the phase diagram of Sulphur system.
 - (b) What do you mean by atomic packing factor? Calculate atomic packing factor of Face centered cubic lattice and simple cubic lattice.
 5
- (a) The standard electrode potentials of the electrodes, Ag⁺(aq)/Ag(s), and Fe³⁺(aq)/Fe²⁺(aq), are 0.799 V and 0.771 V at 298 K, respectively. Write down the electrode reactions and designate the cell. Calculate the equilibrium constant for the cell reaction at 298 K.
 - (b) How pH is measured by a glass electrode?
 - (c) What are the Miller indices, if the plane intersects the crystal lattice at 2a, b, 2c?

3

- (a) Silver has an atomic radius of 0.144 nm. Calculate the densities of silver if it crystallizes in (i) simple cube, and (ii) FCC structure (At. mass of Ag = 108 amu).
 - (b) The rate constant of a reaction is found to be tripled when the temperature increased from 25°C to 60°C. Calculate the activation energy.
 - (c) Explain why the order of a reaction cannot be predicted from overall stoichiometry?

6.	(a)	Show that:	.5+2.5
		(i) $(\delta S/\delta P)_T = -(\delta V/\delta T)_P$	
		(ii) $(\delta V/\delta S)_P = (\delta T/\delta P)_S$	
	(b)	For the reaction,	
		$Ag_2O(s) \rightarrow 2Ag(s) + 1/2 O_2(g)$ at 1 atm,	
		$\Delta H = +30.6 \text{ kJ mol}^{-1} \text{ and } \Delta S = 0.66 \text{ kJ K}^{-1}.$	
		Calculate the temperature at which the reaction would be in equilibria	um. 2
	(c)	A second order reaction, when two reactants are same, is 30% com	pleted
		in 500 seconds. How long will it take to go to 90% completion?	3
7.	Writ	te notes on :	3+4+3
	(a)	Born-Haber cycle	
	(b)	Enzyme catalysis	
	(c)	Application of Schrödinger equation.	
3.	(a)	Calculate the uncertainty in velocity for a particle with mass 7×10^{-7} the uncertainty in position is 0.1 nm.	¹⁸ kg, if
	(b)	Zinc granules are added in excess to a 500 ml solution of 1 M nickel at 298 K until equilibrium is reached. Find out the concentration of N	Ji ²⁺ ion
		in solution at equilibrium (E° of Ni ²⁺ (aq)/Ni(s) = -0.24 V and E° of Zn (s) = -0.76 V, at 298 K).	²⁺ (aq)/

(c) How is fuel cell different from battery? What are the advantages of fuel

cells?