										M18002086
Registration No:										
Total Number of Pages	s : 02									M.TECH
M.TECH 2 ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 SEMICONDUCTOR DEVICE MODELLING Branch: EC, Subject Code:MECPE2033 Time: 3 Hours Max Marks : 70										
			<u>RT-A</u>						(10) X 2=20 MARKS)
1. Answer the followir . a)What are the limitatio	• •		model	?						(CO1)
b) Define avalanche mu	ltiplicatio	on.								(CO2)
c) Draw the SPICE2 reverse characteristics of the real diode.							(CO4)			
d) What do you mean by HSPICE models?							(CO3)			
e) Draw the structure of power BJT.							(CO1)			
f) Write the expression of transconductance of JFET.							(CO2)			
g) How the temperature and area factor effects on the JFET model parameters?							(CO3)			
h) Draw the large signal model for the n-channel MOSFET.							(CO4)			
i) What do you mean by IGFET?							(CO2)			
j) What is the use of BSIM1 model in MOSFET?								(CO4)		
<u>PART-B</u> (5 X Answer any five questions from the following.						X 10=50 MARKS)				
2.a. Explain the temperat	ure deper	idence o	of diod	e char	acteris	stics.				[5] (CO1)
b. Explain the small signal model of the diode & it's implementation in SPICE2.								[5](CO2)		
3. a. Describe the operation of BJT by using Ebbers-Moll static model.									[5] (CO3)	
b. Describe the operation of BJT by using Gummel-poon static model.								[5] (CO3)		

M18002086

4. a. What are the second order effects in Ebbers-Moll static model? Explain it.					
b. Differentiate large signal model & small signal model of JFET with proper Circuit diagram.	[5](CO2)				
5. a. Are there any limitations in Ideal theory of JFET? Justify your answer.	[5] (CO1)				
b. Draw the structure of MOST & explain the fabrication steps.	[5] (CO2)				
6. a. With small signal equivalent circuit explain noise model BJT.	[5](CO4)				
b. What are the sources of noise? Briefly describe.	[5] (CO1)				
7. a. With small signal equivalent circuit explain noise model BJT.	[5](CO3)				
b. Explain the concept of channel length modulation.	[5](CO4)				
8. Write short notes on					
a. Distortion at high frequency	[5](CO2)				
b.Hot electron effect	[5](CO1)				

•

==0==