M18002079

[5](CO2)

[5](CO1)

Registration No:

Total Number of Pages : 02 M.TECH

M.TECH 2ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 ANTENNA DESIGN & SIMULATION

Branch: EC, Subject Code:MECPE2032

Time: 3 Hours Max Marks: 70

Max Marks : 70	
PART-A	(10 X 2=20 MARKS)
1. Answer the following questions.	
a) Draw the radiation pattern of: (i) Directional antenna. (ii) Isotropic antenna.	(CO3)
b) Explain effective height of an antenna.	(CO2)
c) What is the maximum effective aperture of a microwave antenna which has a	,
directivity of 900?	(CO3)
d) Mention the factors on which the resultant pattern of array depends.	(CO1)
e) What is Duct propagation?	(CO4)
f) Define Maximum usable frequency.	(CO2)
g) Define Antenna temperature.	(CO1)
h) What is the role of ground plane in microstrip patch antenna?	(CO4)
i) Write the equation which relates the dielectric constant and effective dielectric	:
constant in microstrip patch antenna.	(CO2)
j) Give three examples of the dielectric materials with their relative permittivity	. (CO1)
<u>PART-B</u>	(5 X 10=50 MARKS)
Answer any five questions from the following.	
2.a) Briefly explain characteristics of different ionized layers in ionospheric prop	pagation.
2.a) Briefly explain characteristics of different ionized layers in ionospheric prop	_
	[5](CO2)
 2.a) Briefly explain characteristics of different ionized layers in ionospheric prop b) Calculate the critical frequency for a medium at which the wave reflects if t electron density is 1.24 X 10⁶ electrons/cm³. 	[5](CO2)
b) Calculate the critical frequency for a medium at which the wave reflects if t	[5](CO2) he maximum
b) Calculate the critical frequency for a medium at which the wave reflects if t electron density is 1.24 X 10 ⁶ electrons/cm ³ .	[5](CO2) he maximum [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if t electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. 	[5](CO2) he maximum
b) Calculate the critical frequency for a medium at which the wave reflects if t electron density is 1.24 X 10 ⁶ electrons/cm ³ .	[5](CO2) he maximum [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if the electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. b) Explain the following and derive the relevant expressions: 	[5](CO2) he maximum [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if the electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. b) Explain the following and derive the relevant expressions: i. Critical frequency. ii. Maximum usable frequency. 	[5](CO2) he maximum [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if the electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. b) Explain the following and derive the relevant expressions: Critical frequency. Maximum usable frequency. Virtual height. Skip distance 	[5](CO2) he maximum [5] (CO3) [5](CO4) [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if the electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. b) Explain the following and derive the relevant expressions: i. Critical frequency. ii. Maximum usable frequency. 	[5](CO2) he maximum [5] (CO3) [5](CO4) [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if the electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. b) Explain the following and derive the relevant expressions: i. Critical frequency. ii. Maximum usable frequency. iii. Virtual height. iv. Skip distance 4.a) An uniform linear array consists of 16 isotropic sources with a spacing of λ/ 	[5](CO2) he maximum [5] (CO3) [5](CO4) [5] (CO3)
 b) Calculate the critical frequency for a medium at which the wave reflects if the electron density is 1.24 X 10⁶ electrons/cm³. 3.a) Write about the Duality theorem and it's applications. b) Explain the following and derive the relevant expressions: i. Critical frequency. ii. Maximum usable frequency. iii. Virtual height. iv. Skip distance 4.a) An uniform linear array consists of 16 isotropic sources with a spacing of λ/difference φ = -90⁰ Calculate HPBW & effective aperture. 	[5](CO2) he maximum [5] (CO3) [5](CO4) [5] (CO3) 4 & phase [5](CO2) [5](CO1)

b) What are Hertzian dipoles? Derive the electric and magnetic field quantities of Infinitesimal

and mutual impedance.

dipole and radiation pattern.

6.a)Explain the following terms with respect to antenna

- i) Polarization
- ii) Beam solid angle
- iii)Gain
- iv)Bandwidth
- v) Radiation pattern
- b) Explain the principle of pattern multiplication.

[5](CO4)

7. a) Explain about the general structure of phased array.

[5](CO₂)

- b)A microstrip antenna with overall dimensions of L = 0.906 cm (0.357 inches) and W = 1.186 cm (0.467 inches), substrate with height h = 0.1588 cm (0.0625 inches) and dielectric constant of 2.2, is operating at 10 GHz. Find; [5] (CO3)
 - i. The input impedance.
 - ii. The position of the inset feed point where the input impedance is 50 ohms.
- 8. Write short notes on

a) Reflector antenna [5] (CO2) b)Antenna parameters [5] (CO3)

==0==