Registration No:										
Total Number of Pages	s : 02									M.TECH
M.TECH 2 ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 ADVANCED WIRELESS & MOBILE TECHNOLOGY Branch: EC, Subject Code:MECPC2020 Time: 3 Hours Max Marks : 70										
PART-A						(10	(10 X 2=20 MARKS)			
1. Answer the followin a) What is the role of GPR	• •		GSM s	system	1?					(CO2)
b) What is shadow effect? What type of distribution is used to represent the shadow effect?							(CO1)			
c) Define coherence time. How can be the channel characterize with respect to coherence time?								me? (CO2)		
d) Calculate the reduction i	n the transm	it powe	er in dI	3 whei	n the ra	dius o	f the n	ew cel	1	
becomes of that the old cell assuming path loss exponent K=4.									(CO3)	
e) The total coverage area	of a cellular	system	is 262	2.4 km ²	2 and c	ell rad	ius is 1	lkm. V	Vhat is	the system
capacity for N=4 if there are total 1000 duplex channels?								(CO4)		
f) Define spectral efficiency	y. What is th	e spect	ral effi	iciency	of a n	nobile	phone	system	n wher	e there are 395

channels of 30 kHz each in a bandwidth of 12.5 MHz?(CO3)g) What are the requirements for a Direct Sequence Spread Spectrum?(CO2)h) Explain the role(s) of frequency synthesizer in frequency hopping spread spectrum.(CO1)i) Write down the property of MSK.(CO4)j) Prove $D=\sqrt{3}NR$ (CO3)PART-B(5 X 10=50 MARKS)

Answer any five questions from the following.

2.a) Calculate the minimum power received by a receiver situated 3 Km from the transmitter. Given power at reference distance ($d_0 = 100m$) is -32dBm. Path loss exponent is 4 and shadowing loss is 10.5 dB. [5](CO3)

- b) Explain PN Sequence generator with suitable diagram. [5](CO4)
- 3.a) If a GSM system uses a frame structure where each frame consists of 8 time slots, and each time slot contains 156.25 bits, and data is transmitted at 270.833 kbps in the channel, find (a)the time duration of a bit (b)the time duration of a slot (c)the time duration of a frame (d)How long must a user occupying a single time slot wait between two successive transmissions? [5](CO2)
 b) Define equivalent time duration of a problem beneficies and the slot wait between the successive transmissions? [5](CO2)

b) Define carrier synchronization. Explain how it is achieved in homodyne detection of QPSK signal?

[5] (CO1)

M18002044

 4. a) A communication system transmits at 120 kbps and uses 32-FSK. A hop rate of 2000 hops p is used over an available spectrum of 10 MHz. Calculate (a) data symbol transmitted per hop number of non overlapping hop frequencies. 				
b) Explain different channel allocation methods available in wireless network.	[5](CO2)			
5.a) Explain the evolution of wireless technologies from 1G to 4G with suitable examples.b) Explain least mean square algorithm for adaptive equalization.				
6. a) Explain the comparison between FDMA,TDMA and CDMA system.b) Explain GSM system architecture.				
7. a) What's a Rake receiver ? Explain operation and principle of M-branch RAKE receiver.	[5](CO3)			
b) Derive the expression of received power using path loss over a reflecting surface.	[5](CO2)			
8 Write short answer on				
a) Equalizer	[5](CO4)			
b) Binary Phase Shift Keying	[5](CO3)			

==0==