Registration No:

Total Number of Pages : 02

M.TECH 2ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 GAS TURBINE AND JET PROPULSION Branch: TE, Subject Code:MTEPE2043 Time: 3 Hours Max Marks : 70

<u>PART-A</u>

(10 X 2=20 MARKS)

1. Answer the following questions.

a)	State the assumption made in an ideal cycle analysis of gas turbine.	(CO1)
b)	What are the advantage of closed cycle gas turbine over open cycle gas turbine f	? (CO1)
c)	Define slip factor for centrifugal compressor.	(CO2)
d)	What are the basic requirement of compressor for air craft application?	(CO2)
e)	What do you mean by power input factor for a centrifugal compressor?	(CO2)
f)	What are the condition of impulse turbine ?	(CO3)
g)	How do you classify turbine blade cooling ?	(CO3)
h)	What are the reason for unstable flow in axial flow compressor ?	(CO3)
i)	Define momentum thrust and pressure thrust.	(CO4)
j)	Define combustion intensity.	(CO4)

PART-B

Answer any five questions from the following.

- 2. a) A turbojet power plant uses aviation kerosene having a calorific value of 43 MJ/Kg. The fuel consumption is 0.18 (Kg/hour Newton) of thrust. The aircraft velocity is 500 m/sec then mass of air passing through the compressor is 27 Kg/sec and thrust is 9 KN. Calculate the air fuel ratio and overall efficiency. (CO1)[5]
 - b) The specific power output of a turbine is 336.5 Kw and the exhaust gas leaves from the turbine at 700K. Calculate the pressure ratio. (CO1)[5]
- 3. a) Prove that the air standard efficiency of a closed cycle gas turbine is

$(\eta)_{\text{air standard}} = 1 - (1/r_p^z)$		
Where $r_p = pressure ratio$	$z = (\gamma - 1/\gamma)$	(CO1)[5]
b) In a closed cycle gas turbine at the	e condition of maximum	work done the pressure ratio
becomes $r_p = (T_3/T_1)^{1/2z}$		
Where $z = (\gamma - 1/\gamma)$		(CO1)[5]

4. a)A gas turbine unit receives air at pressure 1 bar and 300K and compress it adiabatically 6.2 bar. The compressor efficiency is 88%. The fuel has a heating value of 44186 KJ/Kg and the fuel air ratio 0.017. If turbine efficiency is 90%. Calculate turbine work, compressor work and thermal efficiency.

Assume $C_{pg} = 1.147 \text{ KJ/KgK}$ $\gamma = 1.4$	(CO3)[8]
b) What is effectiveness? Draw T-S diagram of regenerator system.	(CO3)[2]

(5 X 10=50 MARKS)

M.TECH

M18002156

	M18002156
5. a) Draw T – S and h – S diagram of centrifugal compressor and calculate σ	compressor
efficiency.	(CO2)[5]
b) Write down different losses in a centrifugal compressor.	(CO2)[5]
6. a) A centrifugal compressor has to deliver 35 Kg of air per sec. The impeller diameter revolving at 11500 rpm with an adiabatic efficiency of 80%. If th is 4.2 calculate the axial width of impeller. The radial velocity at the tip is	ne pressure ratio
inlet conditions are 1 bar and 47° C.	(CO2)[5]
b) Briefly explain the surging and chocking of compressor.	(CO2)[5]
 7. a) A 10 stage axial flow compressor provide an overall pressure ratio of 5:1 w isentropic efficiency of 87%. When the temperature of air at inlet is 15°C. T equally divided between the stages. A 50% reaction is used with a blade spea and constant axial velocity of 170 m/sec. Estimate the blade angles. Assumfactor is 1. b) Draw and explain the performance characteristics curve of a axial flow compression. 	The work is eed of 210 m/sec ie workdone (CO4)[5]
8. Write down the short notes of	[5 X2]
a) Degree of reaction	(CO3)
b) Subsonic and Supersonic flow	(CO2)

b) Subsonic and Supersonic flow	
---------------------------------	--

==0==