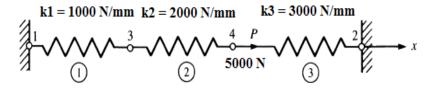
Total Number of Pages : 02	M.TECH	
M.TECH 2 ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 FINITE ELEMENT METHOD Branch: MD, Subject Code:MMDPE2041 Time: 3 Hours Max Marks : 70		
PART-A (10 X 2=20 MARKS)	
 1. Answer the following questions. a) What is meant by finite element analysis? b) Define discretization with an example ? c) Summarize the major steps involved in Finite element analysis. d) Why preprocessing is required in FEA. e) What do you mean by weighted residual method. 	[CO1] [CO1] [CO1] [CO1] [CO2]	
f) How frame structure is different from bars ?	[CO1]	
g) State the principle of minimum potential energy.	[CO1]	
h) What is an isoparametric element ? State its important in finite element method	l. [CO1]	
i) Write down the stiffness matrix equation for one dimensional heat condu	uction equation.	
	[CO3]	
j) Explain axisymmetric element with an example.	[CO4]	

M18002137


(5 X 10=50 MARKS)

<u>PART-B</u>

Answer any five questions from the following.

Registration No:

- 2. a) Write down the advantages, disadvantages and limitation of FEM. [CO1]
 b) List out the typical areas of engineering where the finite element method is applied. [CO1]
- 3.a) Derive the stiffness matrix for the spring assemblage with arbitrarily numbered nodes as shown in Figure 1. A force of 5000 N is applied at node 4 in the x direction. The spring constants are given in the figure. Nodes 1 and 2 are fixed. [CO1]

Figure-1

b) Calculate the displacement on nodes 2 and 3 for the three-bar assemblage as shown in Fig.-2. A force of 3000 N is applied in the x direction at node 2. The length of each element is 30 m. Let $E = 30 \times 10^6 N/m^2$ and $A = 1 m^2$ for elements 1 and 2, and let $E = 15 \times 10^6 N/m^2$, A = $2 m^2$ for element 3. Nodes 1 and 4 are fixed. [CO1]

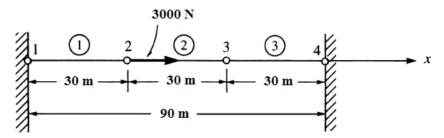
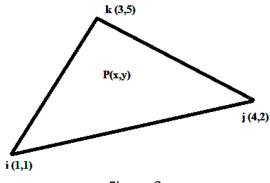



Figure-2 : Figure 3–4 Three-bar assemblage

- 4. a). Explain Galerkin's Method with its governing equations. [CO2]
 b) Discuss in detail about the treatment of boundary conditions in terms of elimination approach. [CO2]
- 5. a) Define the stiffness matrix and describe its characteristics[CO3]b). Derive the element stiffness matrix for the plane truss element.[CO3]
- 6. a) The (X,Y) coordinates of the nodes I, j,k of a triangular element are (1,1), (4,2) and (3,5) respectively as shown in figure-3. The shape functions of a point P located inside the element are given by N1= 0.15 and N2= 0.25. Determine the X and Y Coordinates of the point P.

b) Find the shape functions of a quadrilateral element in natural coordinates.		[CO3]
7. a) How to evaluate the stiffness matrix by Gaussian Quadrature principle.		[CO4]
b) Derive the stiffness matrix of a plate bending element.		[CO4]
8. Write short notes on		
a) Mesh Generation	[CO1]	
b) Variational Method	[CO2]	

==0==