M18002049

(10 X 2=20 MARKS)

Registration No:

ion No:

Total Number of Pages : 02

M.TECH 2ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 EXPERIMENTAL STRESS ANALYSIS Branch: MD, Subject Code:MMDPC2020 Time: 3 Hours Max Marks : 70

<u>PART-A</u>

1. Answer the following questions.

a)	What are the ideal requirements of a strain gauge?	[CO1]
b)	What are different bonding materials used in strain gauge application?	[CO1]
c)	Define Gauge Factor for an electrical resistance strain gauge?	[CO1]
d)	Write the conditions for a balanced Wheatstone Bridge?	[CO2]
e)	What is Photoelastic effect ?	[CO2]
f)	Calculate the thickness of a stressed model so that the polarized light passing through	
	it breaks into two components having phase difference of $\pi/2$. Given the wave length	
	of light λ =548 nm and refractive indices 1.31 and 1.29 respectively.	[CO2]
g)	State Stress Optic Law ?	[CO3]
h)	What Is Tardy's method in photoelasticity?	[CO3]
i)	Write down the advantages and disadvantages of brittle coating method.	[CO4]
j)	Distinguish between "Stress coat" and "All Temp" as materials used for strain indication	by Brittle
	Coating method?	[CO4]

PART-B

(5 X 10=50 MARKS)

Answer any five questions from the following.

2.

a) Define the gauge factor of a resistance strain gauge. What are the essential requirements of electrical resistance strain gauge? [CO1]

b) Give briefly the operating principles of mechanical, optical, acoustic, pneumatic strain gauges. [CO1]

3.

a) The following observations were made with a rectangular rosette mounted on an aluminium specimen.

$$\varepsilon_A = -170 \,\mu m/m$$

$$\varepsilon_B = +70 \,\mu m/m$$

$$\varepsilon_C = +70 \,\mu m/m$$

Determine the principal strains, principal stresses. For aluminium, E=68 kN/ mm^2 , μ = 0.33. [CO1]

b) Explain the construction of the three elements Delta rosette and derive the expressions for the principal stresses and their orientations in terms of strain measurement readings.

[CO1]

4.

a) Show the arrangement of all the optical elements in a circular polariscope. Explain how the circularly polarized light is available in this arrangement. [CO2]

M.TECH

- b) When a grating of pitch 40 lines per mm is given a slight rotation θ with respect to a second grating of the same pitch, moire fringes are formed making an angle of \emptyset with respect to second grating. Determine the angle θ and interfringe spacing δ , if the angle \emptyset is equal to (i) 60^{0} and (ii) 110^{0} . [CO2]
- 5.
- a) Explain the Wheatstone bridge circuit for measurement of strain from a strain gauge . [CO2]
- b) Define the circuit sensitivity of the circuit with four strain gauges. What is meant by 4-arm and 2arm circuits? [CO2]

6.					
	a)	What do you mean by three dimensional photo elasticity?	[CO3]		
	b)	Explain in detail with a neat sketch about the Frozen stress method in 3-D.	[CO3]		
7.					
	a)	Derive the expression for failure theory of the case $\sigma_c{}^x > 0 > \sigma_c{}^y$	[CO4]		
	b)	Explain the procedure for calibration of brittle coating.	[CO4]		
8.Write notes on					
	a)	Null-balance bridge.	[CO2]		

ω,	Null Bulance Bhage.	[002]
b)	Moire Fringe method	[CO1]

==0==