Registration No:								
Total Number of Page	es : 02							M.TECH
M.TECH 2 ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 ADVANCED DIGITAL SIGNAL PROCESSING Branch: EC, Subject Code:MECPE2041 Time: 3 Hours Max Marks : 70								
	<u>PA</u>	RT-A					(10) X 2=20 MARKS)
 Answer the followi a) Find the z transform of b) What do you mean by c) Find the condition of d) Represent x (n) = {2, e) What is the total numpoint DFT. f) If x (n) = naⁿu (n), fing g) Determine the impulse equation. Y (n)-3y (n-h) What do you mean by i) What is the meaning of j) What are GIBBS phere 	of x (n) =u (-n+2) y scaling properti- stability for x (n) 4, 5, 0, 8) in term ber of real additi- d the nx (n). se responses h(n) 1)-4y (n-2) =x (n) y twiddle factor? of wrapping effect	es? = $A^n u(n)$ ns of imp on and re for the sy) +2x (n-	ulse respo al multipli vstem desc	ication		-		(CO3) (CO3)
Answer any five ques		<u>\RT-B</u> following	g.				(5)	X 10=50 MARKS)

2. a) Discuss the Blackman-Tukey method.b) Develop an alternate two-stage design of the decimator by designing the				
decimation filter in the form H (z) =G (z6) F (z).	[5] (CO4)			
3. a) State and prove the parseval's Theorem.				
b) Explain the Radix 2 DIT-FFT algorithm.	[5] (CO4)			
4.a) Evaluate the value of X (K) if x (n) = (-1) ⁿ , $0 \le n \le 7$ using DIF-FFT algorithm.	[5] (CO3)			
b) Explain about Decimation and interpolation with the help of polyphase filters.	[5] (CO2)			
5.a) Discuss sampling rate conversion by a rational factor.	[5] (CO1)			
 b) Determine the coefficient of {h (n)} of a linear phase FIR filter of length M=15 which has a symmetric unit sample response and a frequency satisfies the condition 	response that			
$H_{r}\left(\frac{2\pi K}{15}\right) = \begin{cases} 1, k = 0, 1, 2, 3\\ 0, k = 4, 5, 6, 7 \end{cases}$	[5] (CO2)			

M18002124

6.a) Calculate the mean and variance of the auto correlation function of random signals.	[5](CO3)
b) Explain the architecture of TMS320C5X.	[5] (CO4)
7.a) Find the circular convolution between $x_1(n) = \{2,1,2,1\}$ and $x_2(n) = \{1,2,3,4\}$ in time domain.	[5](CO2)
b) Explain the symmetric properties of DFT.	[5](CO1)
8. Write short notes ona) Spectral Estimationb) Two-channel filter banks	[5] (CO4) [5] (CO3)

==0==