M18002005

|--|

Total Number of Pages: 02 M.TECH

M.TECH 2ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 DATA ANALYTICS

Branch: CS, Subject Code:MCSPC2010
Time: 3 Hours

Max Marks: 70

PART-A	(10 X 2=20 MARKS)
1. Answer the following questions.	
a) Define SSE?	CO-1
b) Why subset selection is necessary, explain?	CO-2
c) What is the importance of training set in supervised learning?	CO-1
d) What is over fitting?	CO-1
e) Give an example of a regression problem specifying the predictors and the response	onse? CO-2
f) What is co-linearity?	CO-1
g) What is forward stepwise selection?	CO-1
h) In support vector machine method for classification, how are the support vecto	rs defined? CO-2
i) How are the weights in back-propagation algorithm determined?	CO-2
j) What is prescriptive analysis?	CO-1

PART-B

(5 X 10=50 MARKS)

Answer any five questions from the following.

- 2. a) State the regression problem. Obtain the expression for the residual sum of squares (RSS) in vector form for a simple linear regressor. [5] CO-1
 - b) What is subset selection problem? Why is subset selection necessary? Write the best subset selection algorithm and state its limitations. [5] CO-1
- 3. a) Write down the algorithm of linear discriminant analysis method for classification for a single predictor case when the density function of each class is Gaussian. [5] CO-1
 - b) Explain Rosenblatt's perceptron with a figure and write the Perceptron learning algorithm.

[5]CO-1

4. a) Analyze how logistic regression can be used for classification.

[5] CO-3

b) The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	χ_1	χ_2	X 3	Υ
1	0	2	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Predict the value of Y when X₁=0, X₂=-1, and X₃=1 using K-NN classifier with K=3.

[5] CO-2

5.	. a) Draw a diagram of a single hidden layer feed forward network. Outline the issues related t training a multi layer perceptron neural network. [5] CO-2					
	b) Write	the Principal component analysis algorithm.	[5]CO-1			
6.	6. a) Giving an example, show how random forest algorithm is used to predict the response of a repression problem. [5] CO-3					
	b) What	is clustering? Explain, k-means clustering algorithm.	[5] CO-1			
7.	c be 80 ID I1 I2 I3 I4 Find a	base has four transactions. Let minimum support s be 60% and th 0% T item {K,A,D,B} {D,A,C,E,B} {C,A,B,E} {B,A,D} all frequent item sets using Apriori algorithm. e the issues and challenges of big data analytics.	e minimum confidence [5] CO-2 [5] CO-3			
8.	Write sh	ort notes on				
a) Supervised Vs. Unsupervised learning [5]CO-1 b) Market basket analysis [5]CO-1			[5]CO-1 [5]CO-1			

