I	Regi	istration No: ^{:0}		210		210		210		210		210
Tota	210		Semester IATERIAL	S FÖR A BRANC Tii Ma Q.0	ADVAN H: ME me: 3 I x Mark CODE	NCED A ETTA, N Hours (s: 70 : C292	APPLIC IME	ATION 210	S	210	3.Tech. MT4404	210
			figures in							10 1001.		
Q1.	210 a) b) c) d) e) f) g) h) i) j)	Answer the for What are Cellumicrostructure What is the chi What is meant What is 2-way Cite one similar dispersion street A thermoplast matrix pm is 1 density of the control Draw the strest Define PECVE Why conductive	ular material of metal for ef strengthe by sensitize shape memarity and two ngthening? ic matrix constrain diagnatic strain diagnatic technique	Is? Whatams? ening meation in shory effect ontains 3 while that Assume gram for of thin fill	t quanti- chanisr tainless ct? ences b 30 wt. 6 t of glas that no metal for matrix, m depo	m in mice s steel? etween % glass ss fiber, voids are bam and fibre an sition.	precipitation fiber. It pf, is 3 re prese identifyed compe	d steels ation had f the de g cm-3 ent. various osite.	? ensity of what is regions	and the ₂₁₀	2 x 10)	210
Q2.	a) b)	Explain the value Define Biocom in medicine an	patibility? D	iscuss b							(5) (5)	210
Q3.	a) b)	transformation What are Heat Steels? Explain	resistant S	g steels a teels? W thening i	and con hat are	ventiona the diffenism in the	al steels erent typ	oes of H	marten leat resis	stant	(5) (5)	
Q4.	a) b)	Explain the diff the strengthen Name the various applica	ing mechan ous method	isms and s for cha	d applica racteriz	ations of	nickel b	pased s	uper allo	ys?	(5) (5)	210
Q5.	a) b)	Derive an expaligned fibrous What are the each? Explain steels?	composite different ty	loaded in pesoof I	n the dii High Sp	rection o	f alignm els? Gi	ent? ive one	exampl	e of210	(5) (5)	210

Q6. a) Compare the structure and properties of thermosetting, thermoplastic and elastomeric polymers with examples and applications.

b) What do you mean by super alloy? Describe the Co-based super alloys.

(5)

(5)

	210	210	210	210	210	210	210		
Q7.	210	 A continuous and aligned glass fiber-reinforced composite consists of 40 vol% of glass fibers having a modulus of elasticity of 69 GPa and 60 vol% of a polyester resin that, when hardened, displays a modulus of 3.4 GPa. (a) Compute the modulus of elasticity of this composite in the longitudinal direction. (b) If the cross-sectional area is 250 mm² and a stress of 50 MPa is applied in this longitudinal direction, compute the magnitude of the load carried by each of the fiber and matrix phases. (c) Determine the strain that is sustained by each phase when the stress in part (b) is applied. 							
Q8.	a) b) c) d)	Write short answer on any Titanium shape memory allo Elastic behavior(Transverse High Strength Low Alloy (HS Bio Composite	oy e Loading)	210	210	(5 x 2)	210		
	210	210	210	210	210	210	210		
	210	210	210	210	210	210	210		
	210	210	210	210	210	210	210		
	210	210	210	210	210	210	210		
	210	210	210	210	210	210	210		