Total	number of pages : 02 210 210 210 210 210 F	B.Tech CCH4305
	6 th Semester Back Examination 2017-18 CHEMICAL REACTION ENGINEERING BRANCH : CHEM Time : 3 Hours Max Marks : 70 Q.CODE : C537	
210	swer Question No. 1 which is compulsory and any FIVE from th The figures in the right-hand margin indicate marks. ssume suitable notations and any missing data wherever neces Answer all parts of a question at a place.	210
Q1.	 Answer the following questions : (a) Discuss the significance of Activation energy. (b) Enumerate the ways of defining the rate equation. 	(2 x 10)
210	 (c) Define a constant density system with suitable examples. (d) Write the integrated equation for a third order reaction. (e) What are the disadvantages of half life method of interpreting batc reactor data? 	
	 (f) Find out the holding time for the conversion in a mixed reacted accomplishing a reaction A → 3R is 50% when gaseous reactant A introduced at the rate of 1 lit/sec and the leaving flow rate is 2 lit/sec (g) Give an account of chain and non-chain reactions with a suitable 	is
210	 example. 210 210 210 (h) Briefly describe about age distribution of fluid. (i) A common rule of temperature is that the rate of reaction doubles for each 10° rise in temperature. What activation energy would the suggest at a temperature of 25°C? (j) Define selectivity in multiple reactions. 	
Q2. 210	Derive the integrated rate equation for a reversible unimolecular typ first order reaction. Explain in details the typical concentration-tim curves for the same.	• •
Q3.	(a) Derive the performance equation of a mixed flow reactor for constant and variable systems.	nt (7)
	(b) From the data given below show that the conversion of N- para chloroacetanilide is a reaction of first order :	- (3)
210	Time (h)0123N49.335.625.7518.5	210
	Where N is the number of ml of $Na_2S_2O_3$ solution required for definite volume mixture.	а
Q4.	(a) Give a qualitative description about product distribution in case of parallel reactions.	of (6)

Q5.	(a)	Define \in_A . Consider a gaseous feed at $T_0 = 1000$ K, $P_0 = 5$ atm, $C_{A0} = 100$ moles/lit, $C_{B0} = 200$ moles/lit enters a flow reactor in which A + B $\rightarrow 5$ R occurs. Find \in_A .	(3)	
210	(b)	In an isothermal batch reactor 70 % of a reactant is converted in 13 minutes. Find the space time and space velocity needed to effect this conversion in a plug flow reactor and a mixed flow reactor.	(7) 210	210
Q6.		Compare the size of mixed flow reactor with plug flow reactor for a second order reaction.	(10)	
Q7.	(a) (b)	Explain the differential method of analysis of rate data. Consider a gas phase reaction $2A = R + 2S$ with unknown kinetics. If for 90% conversion of a A in plug flow reactor, the space velocity of 1 lit/min is needed, find the corresponding space time and mean residence time of a fluid in the reactor.	(4) (6) ²¹⁰	210
Q8.	(a) (b) (c) (d)	Write short notes on any TWO : Residence time distribution Basics of non-ideal flow Temperature dependency from transition state theory Steady state continuous stirred tank reactor	(5 x 2)	210
-10	• •		210	210

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210 210 210 210

210 210 210 210 210 210 210 210