Regist	ation No :								
Total N	umber of Pag	es : 02							B.Tech
210	210		210		210		210	210	PCEE4301
	-		Ti M		TRIBU ECTRIC Iours s : 70	TION		Л	
210	Answer Ques The		o.1 which in the rig	-	-		-		st.
Q1.	Answer the f	ollowing	questions	:					(2 x 10)
a)	What do you u		•				conductor	?	
b)	Differentiate b			•	-				
c)	What is bundl		-		•				
210 d)		-			-		-	210	
e) f)	Draw the phase What is strain location in train	type insi	ulator? Whe			•			
g)	What are the same?					•		d remaining	
h) 210 i)	What are the factors which affect corona?								
210 j	Why we need					of trans	smission s	system?	
Q2. a)	Derive Inducta show how trai							spacing and	(5)
b)	Find the induc Fig. The cor phase sequer	nductors	are transp						(5)
210	210	b	210 a 	4m 3m	210		210 C ^c	210	
210	210		2 4r	3m) <u>a'</u>	210	
Q3 <u>.</u> , a)	Draw the e transmission parameters fo	line usin							(5)

210

	b)	A 100-km long, 3-phase, 50-Hz transmission line has following line constants : Resistance/phase/km = 0.1 ohm, Reactance/phase/km = 0.5 ohm,	(5)
210		Susceptance/phase/km = $10 \times 10-6$ S. If the line supplies load of 20 MW at 0.9 p.f. lagging at 66 kV at the receiving end, calculate by nominal π method :(i) sending end power factor (ii) regulation(iii) transmission efficiency	
Q4.	a)	What do you mean by string efficiency? Can it be 100%? Discuss different methods of improving string efficiency.	(5)
	b)	Each line of a 3-phase system is suspended by a string of 3 similar insulators. If the voltage across the line unit is 17.5 kV, calculate the line to neutral voltage. Assume that the shunt capacitance between each insulator and earth is 1/8th of the capacitance of the insulator itself. Also find the string efficiency.	(5)
Q5.		The towers of height 30 m and 90 m respectively support a transmission line conductor at water crossing. The horizontal distance between the towers is 500 m. If the tension in the conductor is 1600 kg, find the minimum clearance of the conductor and water and clearance mid-way between the supports. Weight of conductor is 1.5 kg/m. Bases of the towers can be considered to be at water level.	(5)
210	b)	A transmission line has a span of 275 m between level supports. The conductor ₁₀ 210	(5)
Q6. 210		Derive the condition for most economical conductor size in a cable. A 2-wire d.c. distributor AB is fed from both ends. At feeding point A, the voltage is maintained as at 230 V and at B 235 V. The total length of the distributor is 200 metres and loads are tapped off as under : 25 A at 50 metres from A ; 50 A at 75 metres from A 30 A at 100 metres from A ; 40 A at 150 metres from A The resistance per kilometre of one conductor is 0.3Ω . Calculate : (i) currents in various sections of the distributor (ii) minimum voltage and the point at which it occurs	(5) (5)
210 Q7.		With neat diagram compare AC and DC transmission systems. Discuss their merits and demerits.	(10)
Q8.		Write short answer on any TWO :	(5 x 2)
	a) b)	Compare static and dynamic compensators	
	b) c)	Grading of Cables Corona loss	
21(210 210 210 210 210 210	