	Regis	tration No :										
	Total N	Imber of Page	es : 03	I	<u> </u>	I	II				B.Tech.	
)	210	210 Answer F	Part-A wh	WER PL BRA Tir Max Q.C ich is co	ANT E ANCH : ne : 3 H Marks CODE : ompuls	NGINE MECH lours s : 100 C516 ory and	ERING 1 any f	e Four fr	om Par	210	IE6D003	210
)	210	The	figures ir Answer	the right all parts		-			arks.	210		210
				t – A (An		-		•				
	Q1.	Answer the fo			-						(2 x 10)	
	a)	(i) Pressure		_ the effic	-	beys the Tempe		fdimin	shing re	turns'		
		(i) Flessure (iii) Volume			• • •	All of th		é				
)	²¹ b)	In thermal pow	ver plants, t	he dust o	. ,			04.0		210		210
	,	(i) Precipita			-	Econon		~)				
		(iii) Superhea			• • •	Air preł						
	c)	Primary air is the		h is used	. ,							
		(i) Reduced	the flame	length	(ii)	Increas	e the fl	ame le	ngth			
		(iii) Transpor	t and dry th	ne coal	(iv)	None o	f the ab	ove				
	d)	Caking coals a		nich								
	210	(i) Burn con		210	• • •	Burn fre	•	210		210		210
		(iii) Do not fo			(iv)	Form lu	imps or	r masse	es of coa	al		
	e)	The value of re		ſ IS	(::)	1 0 0 0 / 4		0/				
		(i) 0.5% to (• • •	1.02% to		%				
	f)	(iii) 0.9% to 0.95% (iv) 1.2% to 1.6%f) Critical pressure ratio of a convergent nozzle is defined as										
	•,	(i) The ratio of inlet pressure to outlet pressure of nozzle										
		()	of outlet p		•							
	210	• •	of outlet		•				nass flov	w rate ²¹⁰		210
		•	area is mir									
			of outlet		to inlet	pressure	e only v	when r	nass flov	w rate		
	~)	•	area is max									
	g)	The pressure a	raught syst			Induced		uht evet	om			
			l draught s		• • •	Natural	-	-				
	210)	The pressure a	-		. ,		-	n Syste	,111			
	210	- 210	aught syste	210		induce		210 ht svst	em	210		210
			I draught s		. ,	Natura	-	•				
	i)	The Da-Lavel										
		•••	compounde	-		•						
			ingle whee									
			compound	-		ie						
	010	., .	ingle whee		turbine	040				0.1-5		~ ~ ~
	210	210		210		210		210		210		210

	210	210 210 210 210 210						
	j)	In regenerative cycle feed water is heated by						
		(i) Exhaust gas (ii) Heaters						
		(iii) Draining steam from the turbine (iv) All of the above						
Q2.		Answer the following questions : Short answer type (2 x 10)					
	21 a)	What do you underrated by captive power plant? 210 210	2 ~ 10)					
	b)	State the advantage of pulverized fuel firing.						
	c)	What is the function of economizer?						
	d)	Differentiate between closed feed heater and open feed water heater.						
	e)	What do you understand by (i) sub sonic nozzle (ii) super sonic nozzle?						
	f)	What are the methods used in ash handling system?						
	g)	Enlist the various types of losses taking place in a steam turbine.						
	_h)	What is draught in boiler operations? 210 210 210						
	i)	What is "half life" of nuclear fuels?						
	j)	Define the term "Breeding".						
		Part – B (Answer any four questions)						
Q3.	a)	Dry saturated steam at 5 bar enters a convergent-divergent nozzle at a	(10)					
		velocity of 100 m/s. The exit pressure is 1.5 bar. The throat and exit areas are						
		1280 mm ² and 1600 mm ² , respectively. Assuming isentropic flow up to the						
	210	throat and taking the critical pressure ratio as 0.58, estimate the mass flow ²¹⁰						
	b)	rate and nozzle efficiency. Explain Critical pressure ratio and choked flow in nozzle.	(5)					
	D)		(3)					
2 4.	a)							
		wheel : Steam velocity at nozzle exit = 500 m/s						
		Nozzle angle = 16°						
	210	Mean blade velocity = 120 m/s						
		Exit angles : first row moving blades = 18°, fixed guide blades = 22°, second row moving blades = 36°						
		Steam flow = 5 kg/s						
		Blade friction coefficient = 0.85						
		Determine : (a) the tangential thrust (b) the axial thrust (c) the power						
		developed (d) the diagram efficiency						
	b)	Differentiate between velocity compounding and pressure compounding of	(5)					
	210	turbines. 210 210 210 210 210 210						
2 5.	a)	During a trail on a steam condenser, the following observations were	(10)					
		recorded.						
		Condenser vacuum: 680mm Hg, Barometer reading:764 mm Hg, Mean condenser temperature:36.2°C, Hot well temperature: 30°C, Condensate						
		formed per hour:1780 kg, circulating cooling water inlet temperature: 20°C,						
		circulating cooling water outlet temperature: 32°C, Quantity of cooling water:						
	210	1250 kg/min¹⁰ Determine : ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰						
		(i) condenser vacuum corrected to standard barometer						
		(ii) vacuum efficiency						
		(iii) undercooling of condensate						
		(iv) condenser efficiency						
		(v) condition of steam as it enters the condenser						
	210	(vi) mass of air present per kg of condensed steam.						

	k) Differentiate between surface condenser and jet condenser.	(5)	
C	Q6. a) Explain with neat sketch, the construction and working of any one type once through boiler.	(10)	
	21	With sketch explain a working of a mountings used in boiler. 210 210	(5)	210
C	Q7. a) Explain : (i) Peak load (ii) Demand factor and (iii) Load factor Mention and explain various types of tariff.	(10)	
	k) Peak load, Demand factor and Load factor	(5)	
C	28. a	Discuss the essential features of a steam power plant.Discuss the factors considered in selecting a site for steam power plant		
	21. K) Explain reheat cycle and regenerative cycle with sketches. 210 210 210	(5)	210
C	29. a) With the help of a sketch show all the important part of nuclear reactor. Describe briefly the functions of each part.	(10)	
	k) Differentiate between BWR and PWR	(5)	