I	Regi	stration No ²¹⁰ 210 210 210 210 210	210							
Tota	al Nu	Imber of Pages : 02 B.Tech. PCCS4304								
	210	6 th Semester Back Examination 2017-18 OPERATING SYSTEM BRANCH : AEIE, BIOMED, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, FASHION, FAT, IEE, IT, ITE, METTA, MME ²¹⁰ Time : 3 Hours Max Marks : 70 Q.CODE : C538 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.	210							
Q1	a) b) c)	Answer the following questions : (2 x 10) What are the main advantages of multiprogramming? What is Throughput, Turnaround time, Waiting time and Response time? Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Show that the system is deadlock free.	210							
	d) e) f) g) h) i)	Differentiate between a page and a segment Differentiate between internal and external fragmentation. ²¹⁰ ²¹⁰ ²¹⁰ What is a Process control block? Explain all its components. What is the difference between synchronization and mutual exclusion? What is swapping and what is its purpose. Differentiate between Logical and Physical file system. What do you mean by logical address and physical address?	210							
Q2	a) b)	Distinguish between multiprogramming and multiprocessing. What is the key 10 (5) motivation for the development of each? Differentiate between long-term scheduler and short-term scheduler. What is the key 10 (5) the purpose of medium-term scheduler?								
Q3	a)	Assume, we have the workload as shown below. All 5 processes arrive at time (5) 0, in the order given. The length of the CPU burst time is given in milliseconds								
	210 b)	Process $\stackrel{210}{:}$ P1 P2 $\stackrel{210}{3}$ P4 P5 210 210 210 Burst Time : 10 29 3 7 12 12 210 210 210 Considering the FCFS, SJF and RR (time quantum=10 ms) scheduling algorithms, which algorithm would give the minimum average waiting time. State the Producer-Consumer Problem. Give a solution to the problem using (5)	210							
Q4	210	Semaphore. ²¹⁰ 210 210 210 210 210 (10) Consider the following snapshot of a system : (10)	210							
	210	AllocationMAXAvailableABCABCP001075333P1200322P2302902210P3211222P4002433	210							

210	2	210	210	210	210	210	210		210
		(nswer the following o a) What is the cont b) Is the system in c) If a request from granted immedia	ent of the matrix safe state? If so, n a process P1 a	Need? what is the safe		est be		
210	 Q5 a) Give an example of a simple resource deadlock involving three processes and three resources. Draw the appropriate resource allocation graph. b) Explain the principles of segmentation with examples. 							(5) (5)	210
		-		-		(.)			
	Q6 a	S	/hen do page fault /stem, when a page	fault occurs?			-	(5) (5)	
210		ea 58	each of the first-fit, best-fit and worst-fit algorithms place processes of 128K.						210
	Q7 a	19 at 17	uppose that the hea 99, is currently servir track 125. The que 77, 94, 150,102, 175	ng a request at tra eue of requests i , 130.	ack 143 and ha s kept in the F	is just finished a r IFO order- 86, 14	equest I7, 91,	(5)	
210	2	fo (a (b	 What is the total number of head movements needed to satisfy these requests for the following disk-scheduling algorithms? (a) FCFS Scheduling (b) SSTF Scheduling (c) SCAN Scheduling 						210
	k) D	escribe the need of anaging and allocati	of device manag	gement. Explai	n techniques us	ed for	(5)	
210	Q8 a k	a) D D) R C) TI	nswer any TWO : isk Structure AID Structure hrashing Nodes	210	210	210	210	(5 x 2)	210
210	2	210	210	210	210	210	210		210
210	2	210	210	210	210	210	210		210