	Reg	gistration No.	
Tota	l nun	nber of pages : 04	B.Tech. PCE6I101
	210	NUMERICAL METHODS & MATLAB BRANCH: CHEM Time: 3 Hours Max Marks: 100 Q.CODE: C141 Answer Part-A which is compulsory and any four from Part-B. The figures in the right-hand margin indicate marks. Assume suitable notations and any missing data wherever necessary Answer all parts of a question at a place.	10 2 10 2 y.
Q1.	(a)	Part – A (Answer all the questions) Answer the following questions: is used to denote the process of finding the valuesinside the interval(X Xn).	(2 x 10)
	210		10 2
	(b)	Lagrange's interpolation formula is used to compute the values forintervals. i. Equal ii. Unequal	_
	(c)	iii. Open iv. Closed Romberg's method is also known as i. Trapezoidal rule ii. Simpson's (1/3)rd Rule iii. Simpson's (3/8)th Rule iv. Rombergs Integration	10 2
	(d) 210	In Simpson's 1/3rd rule the number of intervals must be i. A multiple of 3 210 210 210 2 ii. A multiple of 6 iii. Odd iv. Even	10 2
	(e)	The Eigenvalues of $\begin{bmatrix} 5 & 6 & 17 \\ 0 & -19 & 23 \\ 0 & 0 & 37 \end{bmatrix}$ are	
	210 (f)	ı 3/5-19	is
	210	i. 546 ii. 19 iii. 25 iv. Cannot be determined	10 2

	(g)	y(x+h) = y(x) + h f(x,y) is referred as method. i. Euler						
		ii. Modified Euler						
	210	iii. Taylor's Series	21					
		iv. Runge-Kutta						
	(h)	The power method for approximating Eigen value is method.						
		i. Iterative						
		ii. Point-wise iii. Direct						
		iii. Direct iv. Indirect						
	210 (i)		21					
	(1)	$5\frac{\partial^2 z}{\partial z} + 6\frac{\partial^2 z}{\partial z} = xy$						
		The partial differential equation $\frac{\partial x^2}{\partial y^2}$ is classified as						
		i. Elliptic						
		ii. Parabolic						
		iii. Hyperbolic						
		iv. None of these						
	(j)	A partial differential equation requires	21					
		i. Exactly one independent variable						
		ii. Two or more independent variables iii. More than one dependent variable						
		iv. Equal number of dependent and independent variables						
		The Equal Hambor of doportuons and indoportuons variables						
Q2.		Answer the following questions : (2 x 10)						
	(a)	If $Y(X_i) = Y_i$, $i = 0, 1, 2,$, n write down the formula for the cubic spline polynomial						
	210	$Y(X)$ valid in $X_{i-1} \le X \le X_i$. 210 210 210 210	21					
	(b)	What is interpolation? What is the difference between interpolation and extrapolation?						
	(c)	State Forward divided difference formula for finding F'(x) and f"(x).						
	(d)	The table given below reveals the velocity v of a body during the time t						
		specified. Find its acceleration at t=1.1.						
		210 T(in sec) 120 1.1 12 1.3 1.410 210						
	210		21					
		V(in m/s) 43.1 47.7 52.1 56.4 60.8						
	(e)	Define Discrete Fourier Transform and algebraic form of FFT.						
	(f)	Γ3 7]						
	, ,	Find a QR factorization of a matrix $\begin{bmatrix} 3 & 7 \\ 4 & 4 \end{bmatrix}$.						
		Find a QR factorization of a matrix $\begin{bmatrix} 4 & 4 \end{bmatrix}$.						
	210	210 210 210 210 210 210	21					
	(g)	g) What is the need of numerical solution for differential equations?h) "Multistep methods are not self-starting". Justify.						
	(h)							
	(i)	State the condition of the equation $Au_{xx} + Bu_{yy} + Cu_{yy} + Du_x + Eu_y + Fu = G$ where						
		A, B, C, D, E, F, G are functions of x and y to be (i) elliptic (ii) parabolic (iii) hyperbolic.						
	(j)	Write down Adam-Bashforth predictor formula.						
	U)	The definition basiness products formald.						

Q3. (a) The following table gives some relationship between steam pressure and temperature. Find the pressure at temperature 372 using piecewise linear interpolation.

T(K)	361	367	378	387	399
P(kPa)	154.9	167.9	191.0	212.5	244.2

(b) Find the second derivative at x=4, using the following data:

Х	0	2	4	6	
ý 10	2	5	2 8	14	210
					<u>-</u> '

(03)

(c) Find the values of f"(0.2), f"(0.6), f"(1.0) from the following data using appropriate initial values based on finite difference and Richardson's extrapolation method.

X	U	.	0.6	0.0	1.0
F(x)	0.12	0.49	1.12	2.02	3.20

- Q4. (a) $\int_{0}^{\frac{\pi}{3}} \tan x dx$, using Simpson's rule with h= π /6, π /12, π /24 and then by
 - Romberg's method.

 (b) Using Hermite's interpolation formula estimate the value of In3.2 from the following data

 (10)

2	10	210	6	
x	F(x)=Inx		F'(x)=1/x	
3.0	1.09861		0.33333	
3.5	1.25276		0.28571	
4.0	1.38629		0.25	

Q5. (a) Find the dominant Eigen value of the following matrix by power method and compare with Rayleigh's quotient method. (10)

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

- The differential equation $\frac{dy}{dx} = y x^2$ satisfied by y(0)=1, y(0.2)=1.1218, y(0.4)=1.4282,y(0.6)=1.7379. Compute y(0.8) by Milne's predictor-corrector method.
- Q6. (a) Find the QR factorization of the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ using Gram Schmidt process. (10)
 - (b) Compute 4-point DFT of the following sequence using DIT and DIF algorithms. (05) $X(n)=\{0,1,2,3\}$ 210 210 210

Q7. Find the numerically smallest Eigen value of the matrix A by finding A⁻¹ and without finding A⁻¹ given that one of the Eigen values of A is -20.

210 210 210 $A = \begin{bmatrix} -15 & 4^{210} & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{bmatrix}$ 210 210 2

Q8. Solve $25u_{xx}$ - u_{tt} =0 for u with the boundary conditions u(0,t)=0, u(5,t)=0 and the initial conditions $u_t(x,0)$ =0 and u(x,0)=2x for $0 \le x \le 2.5$ u(x,0)=10-2x for $2.5 \le x \le 5$, taking h=1.(for four time steps)

Q9. (a) Given $\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$, Subject to f(0,t)=f(5,t)=0, $f(x,0)=x^2(25-x^2)$.

Find f in the range taking h=1 and up to 5 seconds. (b) Solve $\nabla^2 u = -10(x^2+y^2+10)$ over the square mesh with sides x=0, y=0, x=3, y=3 (10) with u=0 on the boundary and mesh length is 1 unit.

 210
 210
 210
 210
 210
 210
 2

210 210 210 210 210 210 2:0 2:0

210 210 210 210 210 210 210 210