	Regis	tration no:										
10	Total N	umber of Page	210 210		210	210	210	B.TECH PCME4305				
6 th Semester Back Examination – 2017-18 HEAT TRANSFER Branch: AERO, MECH, PLASTIC												
10	210	210	210	Time: 3 Max ma	3 Hours arks: 70	210	210		210			
Q. Code: C539 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.												
10	Q1 a) b) c) d) e) 210 f) g)	What do you Name two ex Differentiate What do you What is abso	Give two exan mean by view ample where between black mean by fin e rptivity of a bo	nple where / factor in all kind of < body and fficiency? ody in radi	radiation? heat transf d gray body ative heat t	er are exper ransfrer.	210	(2 x 10)	210			
	9) h) j)		olds number? exchanger ac	cording to								
10	Q2 a) ²¹⁰ b)	coordinates.	lowing terms		210	on equation i 210 s of insulation	210	(6) (4)	210			
10	Q3 210	A 3 m high a thick layers stagnant air transfer throu inner surface out door tem inner and out inside temper	of glass (k gap (k=0.02 ugh this doub for a day du perature is 10 ter surfaces a	=0.78W/m 26W/mK). le-paned ring which 0°C. Take re 12 and	K) separa Determine window an room is m the conve 22 W/m ² K	ted by a 3 the steady d the tempe naintained at ction coeffic respectively	30mm wide y state heat erature of its t 35°C while ients on the y. Determine	(10)	210			
10	Q4 210	A liquid (Cp= 35°C at a rat kJ/kg K) with things remain heat exchang	e of 4.5 kg/s n a flow rate ning same, wl	. It is head of 2.5 kg nat will be	ted to 75°C g/s entering percentag	by another at 900°C. e change in	fluid (Cp=1 With these the area of	(10)	210			

210	Q5 ²¹⁰ Q6 a) b) Q7 a) b)		Two very large parallel planes with emissivities 0.8 and 0.5 exchange radiative energy. Determine the percentage reduction in radiative energy transfer when a polished aluminum radiation shield having 0.4 emissivity is placed between them. Explain the effect of extended surfaces on the heat transfer. Derive expressions for temperature distribution and heat dissipation in a straight fin of rectangular profile. Assume any one condition for the analysis.						210
210			210210210210210210Name and explain briefly the various modes of heat transfer.Define the following terms(i) Rayleigh number(ii) Biot number(iii) Nusselt number					(4) (6)	210
210	Q8 21	a) b) c)	Write short notes on Pool boiling and Flow Natural convection and Kirchhoff's law	boiling		210	210	(5+5)	210
210	21		210	210	210	210	210		210
210	21		210	210	210	210	210		210
210	21		210	210	210	210	210		210
210	21		210	210	210	210	210		210