Reg	istration no .		
Total Nun	nber of Pages : 03	B.Tech. PCE6J001	
210	FUNDAMENTALS OF BIOCHEMICAL ENGINEERING BRANCH: CHEM Time: 3 Hours Max Marks: 100 Q.CODE: C332 Answer Part-A which is compulsory and any four from Part The figures in the right-hand margin indicate marks. Answer all parts of a question at a place.	210	210
	Part – A (Answer all the questions)		
Q1.	Answer the following questions :	(2 x 10)	
(a)	The filter material used for the air filtration system is/are		
	(i) Glass wool		
210	(ii) Glass fibre	10	21(
210	(iii) Norite		210
	(iv) All the above		
(b)	The del factor (Δ) increases as the final number of cells (i) Decreases (ii) Increases (iii) Zero (iv) Constant		
21((C)	The immobilized enzymeo produced by a micro encapsulation tectorovides (i) an extremely large surface area (ii) smaller surface area (iii) high amount of solvent (iv) relatively smaller surface area	·	210
(d)	The disk centrifuge is the type of centrifuge used most often f	for bio	
210	separations due to its (i) continuous operation 210 210 (ii) lesser cost (iii) higher speed (iv) ease in operation	210	210
(e)	The plot commonly used for determining the Vmax is (i) lineweaver Burk plot (ii) Langmuir plot		
210	(iii) EadieHofstee plot 210 210 210 (iv) All of these	210	210
(f)	Yield coefficient represents (i) total biomass or product produced (ii) conversion efficiency of a substrate into product (iii) conversion rate of a substrate into biomass or product (iv) product time of biomass or product		

(g)	An ion exchange resin is composed of (i) polymeric network (ii) ionic functional groups		
210	(iii) counter ions (iv) All of these 210 210 210 210 210		21
(h)	 (i) different rate of movement of the solute in the column (ii) separation of one solute from other constituents by being captured on the adsorbent (iii) different rate of movement of the solvent (iv) Any of the above 		
₂₁₀ (i)	Which of the following is not the physical method for the cells rupturing? (i) Milling (ii) Homogenization (iii) Ultrasonication (iv) Enzymatic digestion		21
(j) 210	Which of the operation does not come under upstream processing? (i) Media preparation (ii) Inoculums development (iii) Effluent treatment 210 210 210 210 (iv) Storage of raw material		21
Q2. (a) (b) (c)		(2 x 10)	21
(d) (e) (f) (g) (h) (i) (j)	Define Kirchhoff's law. What do you mean by gas hold up? How it affects oxygen transfer rate? What is Fischer lock and key hypothesis for enzyme specificity? Draw a typical batch growth curve of a microbial culture. What are the methods of air sterilization? What is the composition of gobargas? What do you mean by clarification of fruit juice? Name the enzyme used for this. 210 210 210 210 210		21
Q3. (a) (b) (c)	Part – B (Answer any four questions) Write down the applications of microbiology in food and diary industries. What do you mean by "koji" fermentation? Briefly explain the advantages of "koji" fermentation how it differentiate from submersed fermentation?	(5) (2) (8)	
Q4. ²¹⁰ (a)	What is Line weaver-Burk plot and Langmuir plot and how it can be used to calculate Michaelis-Menten constant? Derive the Michaelis-Menten equation for enzyme kinetics from first principle.	(5) (10)	21
Q5. (a)	Describe briefly the concept of design of a fermenter. What are the factors that you consider as essential for successful design and operation of a fermenter?	(10)	
210 (b)	What are the basic difference between upstream and downstream processing?	(5)	21

	Q6.	(a) (b)	What are the various Write a short note or			cribe them brief	ily.	(10) (5)	
10	Q7.	210	Explain in details the methane formation.	ne production o	of biogas and wha	at are factors a	affecting 210	(15)	210
	Q8.	Describe the process of oxygen transfer methodology from the air bubble to the cell or cluster of cells in fermentation broths. Briefly explain what are the factors affecting oxygen transfer rate in fermentation process.						(15)	
10	Q9. 2	210 (a) (b)	Write a short note or Briefly explain the di			echnique.	210	(5) (10)	210
10	2	210	210	210	210	210	210		210
10	2	210	210	210	210	210	210		210
10	2	210	210	210	210	210	210		210
10	2	210	210	210	210	210	210		210
10	2	210	210	210	210	210	210		210