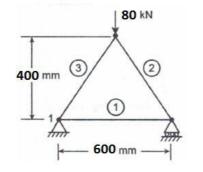

210		210	210	210	210	210
Reg	istra	ation No :				
Tota	l Nu	umber of Pages	: 03			B.Te FEME63
210		210 Answer Questi	BRA Tin Ma: Q.C	EMENT METH NCH : MECH ne : 3 Hours x Marks : 70 ODE : C322		210
210		₂The fi	gures in₂the righ	nt hand margin	n indicate marks	210
Q1		Answer the follo	owing questions :			(2 x 1
	a)	State the use of	Finite element met	hod.		
	b)	State the charac	teristics of shape fu	unctions.		
	c)		ement are used in f		ethod?	
210	d)	Explain about we		210	210	210
	e)		rtance of Pascal's	triangle in FE an	alysis?	
	f)	What are the neo	cessary conditions	for a problem to	be axisymmetric?	
	g)	What is a CST e	lement?			
	h)	What is oparame	etric elements signi	fy?		
210	i)	Write down the s	hape functions for	a four noded rec	tangular element.	210
210	j)	What are the diff	erent commercial F	E codes availab	ble?	210
Q2	a)	Derive the shape bar element.	e functions and str	ain displacemen	t matrix for a 2-no	ded 1-D (5)
	b)	Describe about 0	Gelerkin's approact	n used in finite el	lement method.	(5)
210		210	210	210	210	210
Q3		Find (a) the glob the reaction force of 5 kN is applied	al stiffness matrix, es at node 1 and 2	(b) the displace , and (d) the for ection. The sprin	d nodes shown in f ment of nodes 3 a ces in each spring. ig constants k ₁ =1 k	nd 4 (c) A force
210			k₁ ₃ к	2 4 K 3	2 X	210


Q4 An axial load of 4×10^5 N is applied at 30° C to the rod as shown in figure below. (10) The temperature is then raised to 80° C. Find the stiffness matrix. Calculate the nodal displacements and stresses in each material. For aluminum : $A_{al}=900 \text{ mm}^2$, $E_{al}=0.7 \times 10^5 \text{ N/mm}^2$, $\alpha_{al}=23 \times 10^{-6}/^{\circ}$ C and for steel : $A_{st}=1225$ mm^2 , $E_{st}=2 \times 10^5 \text{ N/mm}^2$, $\alpha_{st}^{10}=12 \times 10^{-6}/^{\circ}$ C.²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰

- **Q5** a) Write the stress-strain relation for an isotropic material in solving axisymmetric (4) problem.
 - b) For the iso-parametric four noded quadrilateral element shown in figure (6) below, determine the cartesian co-ordinates of point P which has local co_{-10}^{-10} ordinates $\xi = 0.4$ and $\eta = 0.6$.

Q6 a) Consider a three bar truss with cross sectional area of 200 mm² as shown in figure below. It is given that $E = 2 \times 10^5 \text{ N/mm}^2$. Calculate (i) Nodal displacements, (ii) Stress in each member and (iii) Reactions at the support. ²¹⁰ (5)

b) In a rectangular element the nodes are as follows in the x-y plane : (5) $(x_1 = 1, y_1 = 1), (x_2 = 5, y_2 = 1), (x_3 = 5, y_3 = 5)$ and $(x_4 = 1, y_4 = 5)$. The temperature distribution is computed at each node as $T_1 = 50^{\circ}$ C, $T_2 = 40^{\circ}$ C, $T_3 = 40^{\circ}$ C and $T_4 = 60^{\circ}$ C. Compute the temperature at (x=4, y=4).

210	210	210	210	210	210	210	210

Q7 From fundamental principle derive the stiffness matrix and the load vector for **(10)** fluid mechanics in two dimensional finite element analysis.

Q8 ₂₁₀	Write short notes on any TWO :	210	210	(5 x 2)
a)	Minimum potential energy principle.			

- **b)** Explain the basic steps involved in FEM.
- c) Write the advantages, disadvantages and limitations of FEM.
- d) Variational methods used for FEM.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210 210 210 210 210