Registr	ation No :									
Total N	umber of Pag	ges : 03	210		210		210	21	B.Tech.	210
210	£10	6 th Ser	nester I ELE I	ECTRIC BRANC Time : Max Ma	r Examin AL DRIV H : EEE 3 Hours rks : 100	ΈS			PEL6J003	210
210		e figures	hich is in the r	compu ight ha	nd marg	jin indi	cate ma	m Part-B.₂ arks.		210
Q1.	Answer the				<u>all the qu</u> tiple type			type :	(2 x 10)	
a)	A motor has continuous o temperature (i) 54 °C° (iii) 58.1 °C	a thermal of full scale	heating f , its final	time con tempera the moto (ii) 55	stant of 5 ature rise or runs co	0 mm. is 80° (ntinuous	When the C, what v	e motor runs would be the		210
b) c)	The concep (i) Constan (iii) reduced Polarity of s	t torque op magnetic l	eration oss	(ii) Sp (iv) ha	peed Reve Irmonic el	ersal iminatio	n	suls in		
210 d)	•	rative braki g. d control me ntrol.	ng. 210 ethod pre	(ii) Dy (iv) No eferred f (ii) Ar	vnamic bra one of the or constai mature vo	aking. se. nt torque oltage ce	210 e drive?	21		210
e) 210 f)		rative braki J.	ng.	(ii) Dy (iv) No	namic braine of the	se	avs	21		210
g)	(i) less that(iii) Equal toWhich of the	n zero 1 following r nous motor induction r	notors ai rs notor	(ii) gro (iv) No re best fo (ii) sq (iv) D.	eater than one of the or rolling r uirrel cag C. motors	n 1. se mills? e induct	tion moto	or		210
210 i)	with firing ar semiconverte (i) 2000rpm (iii) 1450rpm The coefficie	ngle 60 ⁰ ru er with the : ח n ent of adhes	ns at 10 same firi	00 rpm. ng angle (ii) 15 (iv) 10 ghest wl	If this mo of 60 ⁰ , th 00rpm 00rpm nen	otor is c ne moto	onnected	d to 1-phase	!	210
	semiconverte (i) 2000rpm (iii) 1450rpm	er with the s n n ent of adhes are dry	same firi sion is hi	ng angle (ii) 15 (iv) 10 ghest wl (ii) the	e of 60 ⁰ , th 00rpm 00rpm nen e rails are	ne moto oiled				

	A schedule speed of 45 km, per hour is required between two stops 1.5 km apart. The duration of stop is 20 seconds. The acceleration is 2.4 kmphps and retardation is 3.2 kmphps. For a simplified trapezoidal curve, the maximum speed will be	j)
	(i) 40 km per hour (ii) 48 km per hour	
	(iii) 74 km per hour 210 (iv) 90 km per hour 210 210	210
(2 x 10)	Answer the following questions: Short answer type :	2.
(2 × 10)	Answer the following questions: Short answer type : What are the components of electrical drive? Show with suitable block diagram.	a)
	Calculate the starting time of a drive with following parameters: J=10 kg-m ² , T=15+0.5 ω_m and T _L =5+0.6 ω_m	b)
	Draw the steady state load torque speed curves for High speed hoist and Traction load.	C)
		d)
		e)
		f)
	Why stator voltage control is suitable for speed control of induction motors in fan and pump drives?	g) 210
	Why current source inverter-fed induction motor drive is operated at a constant rated flux?	h)
		i)
		j)
	Part – B (Answer any four questions) 210 210 210	210
(10)		13. a)
(5)	· ·	₂₁₀ b)
(10)	 A thyristor converter fed dc motor has the following specifications: Rated armature current=500 A, Armature Resistance=0.01 ohm. The drive operates on following duty cycle: (i) Acceleration at twice the rated armature current for 10 sec. (ii) Running at full load for 10 sec. 	(4. a)
	 (iii) Deceleration at twice the rated armature current for 10 sec. (iv) Idling interval. The core loss is constant at 1 kW. If β has a value of 0.5, determine the maximum frequency of drive operation. 	210
(5)	What are the different classes of motor duty? Derive the expression for overloading factor 'K' for intermittent periodic duty.	b)
	210 210 210 210 210	210

24.0

Q5. 210	a)	The rheostatic braking was applied to bring a separately excited dc motor to rest from its initial speed of 1050 rpm along with a load torque equal to 15% of the rated value. The rating plate of the motor has the data: 35kW, 220V, 175A, 1000rpm. Further, the test results show that: $R_a=0.08 \Omega$, $L_a=0.12$ H, (M.I. of motor-load) J= 8 kg-m ² .	(10)
210		 (i) Calculate braking resistance value so as to limit the braking current to twice the rated value while neglecting the effect of inductance. (ii) Obtain the expression for the transient values of speed and current including the effect of armature inductance, with the motor field flux at the rated value. 	
210	b)	Explain different types of electrical braking of DC series motor with suitable diagram and draw the speed torque characteristics under braking.	(5)
	a)	 A 3-phase, 400V, 50 Hz,6-pole star connected slip ring induction motor has the following parameters referred to stator R_s=0.4 Ω, R_r[/]= 0.6 Ω X_s= X_r[/]= 1.4 Ω. The motor drives a fan load at 960 rpm. The stator to rotor turns ratio is 2. (i) What resistance must be connected in each phase of the rotor circuit to reduce the speed to 800 rpm? (ii) When the motor is controlled by static rotor resistance control, calculate the value of external resistance so that motor runs at 800 	(10)
210	b)	rpm for a duty ratio of 0.5. ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰	(5)
Q7.	a)	A 3-phase 400V, 50 Hz, 4 pole, 1400 rpm, Y-connected wound rotor induction motor has the following parameters referred to stator $R_s=2 \Omega$, $R_r^{\prime}= 3 \Omega X_s=X_r^{\prime}=3.5 \Omega$. The stator to rotor turns ratio is 2. The motor speed is controlled by the Static Scherbius drive. The inverter is directly connected to the source.	(10)
	b)	Determine (i) the speed range of the drive when $\alpha_{max}=165^{02}$ (ii) the firing angle for 0.4 times the rated motor torque and a speed of 1200 rpm (ii) torque for a speed of 1050 rpm and $\alpha = 95^{0}$. Explain the variable frequency control of multiple synchronous motors with	(5)
	D)	suitable diagram and differentiate between true synchronous mode and self- controlled mode.	(0)
Q8. 210	a)	A 80 tonne locomotive is employed to drive a train weighing 400 tonnes. The locomotive is driven by 4 DC motors, each geared to a driving axle through a reduction gear with a=0.3. the train has 48 wheels(including the wheels of locomotive), each with aradius of 0.5 m and aweight of 450 kg. The mass of each motor is 5 tonnes and the average diameter of the armature core is 1.0m. The train resistance is 30N/tonne. Inertia of the rotating parts other than wheels and motors can be neglected. Calculate the coupling torque per motor required to accelerate the train at 1kmphps on a up gradient with G=10. Transmission efficiency is 95%.	
210	b)	Define coefficient of adhesion. How it is different from coefficient of friction? Explain in details the factors affecting coefficient of adhesion.	(5)
Q9.	a) b)	Write a short note on drives used in cement mills and paper mills. What are the application areas and functions of microprocessor in electrical drives?	(10) (5)