Tota	al Ni	umber of Pages : 02 B.Tech.						
1018	ai int	PCS6J002						
		6 th Semester Regular Examination 2017-18						
		DIGITAL SIGNAL PROCESSING						
	210	210 BRANCH : CSE 210 210 Time : 3 Hours						
		Max Marks : 100						
		Q.CODE : C344						
		Answer Part-A which is compulsory and any four from Part-B.						
		The figures in the right hand margin indicate marks.						
.		Part – A (Answer all the questions)						
Q1.	210 a)	Answer the following questions : <i>multiple type or dash fill up type :</i> (2 x 10) Give an example for even and odd signal each.						
	a) b)	Determine the response of a system to the input $x(n) = \begin{cases} n , -3 \le n \le 3\\ 0, otherwise \end{cases}$, if						
	,							
	c)	y(n) = x(n-1). What do you mean by zero-state response of a system?						
	d)	What is meant by stability of a system?						
	e)	State the <i>periodicity property</i> in DFT.						
	f)°	In an N-point [®] DFT, what is the relationship between the radix 'r' of the FFT ²¹⁰ algorithm and 'N'?						
	g)							
	F.)	sequence?						
	h)	Give the difference equation and system function expression for an IIR system.						
	i)	Cite two properties of circular convolution and write the expression to						
	210	compute it.						
	j)°	Give the weight updation rule for LMS algorithm, explaining each parameter in ²¹⁰ the expression.						
00								
Q2.	a)	Answer the following questions : Short answer type :(2 x 10)A filter can easily be designed by strategic location of zeros and poles. In						
	~)	particular, if we want to block a frequency, we, and if we want						
	F.)	to pass or amplify a frequency, we						
	b) C)	Ideal filters are filters so they are physically unrealisable. Z-plane is plane.						
	d)	Direct form structure of filter realisation follows from						
	- 1	equation.(recursive/non-recursive)						
	e) f)	LMS is a descent algorithm. A signal with a pole near the origin decays than one associated with a						
	''	pole near the unit circle.						
	g)	If $x_p(n)$ is the N-point periodic extension of L-length $x(n)$, then $x(n)$ can be						
	210	recovered from $x_p(n)$ if210 210 210						
	h) i)	A causal system hassided impulse response. The region of z-plane, where $X(z)$ exists is called as						
	j)	An FIR filter is stable because						
	•							
Q3.	a)	Part – B (Answer any four questions) Determine the zero-input response of the system described by the (10)						
<u>س</u> ی.	aj	homogeneous second-order difference equation:						
	210	210 $y(n) - 3y(n-1) - 4y(n-2) = 0$ 210 210						
	b)	The impulse response of a linear time-invariant system is $h(n) = \{1, 2, 1, -1\}$ (5)						
		and is excited by an input $x(n) = \{1, 2, 3, 1\}$. Determine the output of the						

	210	system graphically. 210	210	210	210		210
Q4.	a)	Compute the convolution of the following signals by means of z-transform:				(10)	
	210	$x_1(n) =$ 210 210 $x_2(n)$	$\begin{cases} \left(\frac{1}{3}\right)^{n}, n \ge 0\\ \left(\frac{1}{2}\right)^{n}, n < 0 \end{cases} \\ = \left(\frac{1}{2}\right)^{n} u(n) \end{cases}$	210	210		210
	b)	Define what are poles and zeros example that there are exactly sam the poles and zeros at zero and infir	e number of poles			(5)	
Q5.	a)	Determine the inverse z-transform of I. ROC: $ z > 1$ II. ROC: $ z < 0.5$	of $X(z) = \frac{1}{\frac{2^{110}}{1-z^{-1}+0.5z^{-2}}}$, when₀	210	(10)	210
	b)	An LTI system is characterised by the system function $H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$. Specify the ROC of $H(z)$, when the system is: I. Stable					
	210	II. Causal ₁₀ 210 III. Anticausal	210	210	210		210
Q6.	a)	With supporting block diagram and channel equalisation and how it can	(10)				
	b)	Explain LMS algorithm in terms of gradient descent and recursion with supporting mathematical expressions.					
Q7.	a)	Explain the method of designing a supporting mathematical expression	-	er using window	vs with₂₁₀	(10)	210
	b)	What are the characteristics of an ideal frequency selective filter? What compromises can be made while designing a practical filter?					
Q8.	a)	Explain the decimation in frequent background.	icy FFT algorithm	with its mather	natical	(10)	
	b) 210	Give the expressions for directly calculating the DFT and IDFT. What are the					210
Q9.	a)	i. Determine the Fourier transfor $x(n) = \{1,2,3,2,1,0\}$	$\operatorname{rm} X(\omega)$ of the signa	al:		(10)	
	210	ii. Compute the 6-point DFT $V(k)$ $v(n) = \{3,2,1,,0,1,2\}$ iii. Is there any relationship betwee	-	210 xplain.	210		210
	b)	Prove that the discrete sequence sequence $x(n)$ is a periodic one.		•	of a	(5)	
				040			04.0