10		Registration No ²¹⁰ 210 210 210 210	210	210
	Total I	Number of Pages : 02	l	B.Tech. PET6I101
10		6 th Semester Regular Examination 2017-18 DIGITAL COMMUNICATION BRANCH : ECE, ETC Time : 3 Hours Max Marks : 100 Q.CODE : C155	210	210
		Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks.		
10		<u>Fart – A (Answer an the questions)</u>	210	210
	Q1 a	 Answer the following questions: multiple type or dash fill up type : a) ISI may be removed by using Differential coding Manchester coding Polar NRZ None of the above 		(2 x 10)
10	c	 b) ²¹⁰The characteristics of compressor in µ-law companding are ²¹⁰ i. Continuous in nature ii. Logarithmic in nature iii. Linear in nature iv. Discrete in nature c) The and are the two noise effects in Delta modulation. d) Scrambling of data is 	210	210
10		 i. Removing long strings of 1's and 0's 210 210 ii. Exchanging of data iii. Transmission of digital data iv. All of the above 	210	210
10	e	 Matched filters are used For maximizing signal to noise ratio For signal detection iii. In radar 210 210 210 210 210 	210	210
	ſ	 Indicate which of the following pulse modulation system is analog. i. PCM ii. Differential PCM ii. PWM iv. Delta modulation 		
10	ç	 a) The probability error of DPSK is than that of BPSK. The band width BFSK is than BPSK. i. Higher, Higher ii. Lower, Lower iv. Higher, Lower 210 	Of 210	210
		 n) MSK is similar to i. Continuous phase FSK ii. BFSK iv. QPSK 		
10		 Regenerative repeaters are used for Eliminating noise Construction of signals ²¹⁰ iii. Transmission over long distances ²¹⁰ ²¹⁰ ²¹⁰ iv. All of the above 	210	210

	 j) The biggest disadvantages of PCM is Its inability to handle analog signal The high error rate which its quantizing noise introduces Its incompatibility with TDM The large bandwidths that is required for it. 	210
Q2	 Answer the following questions: Short answer type : a) ²¹⁰States important properties of line codes. ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ b) What is the advantage of gray coding of the QPSK system? What is the advantage of differential encoding of the input to the QPSK system? c) What is meant by aliasing effect? Explain. d) What is the advantage of delta modulation over pulse modulation schemes? e) What is the difference between coherent and non-coherent binary modulation schemes? f) If the data transmission rate is R of a communication system, how much ²¹⁰ bandwidth is required if QPSK modulation is used? ²¹⁰ ²¹⁰ g) What is meant by "Adaptive" in adaptive delta modulation? h) What is pulse-shaping? Give one example of pulse-shaping filter function. i) What do you mean by quantization? 	(2 x 10) 210
Q3	 Part – B (Answer any four questions) a) With the help of neat block diagram explain the principle of adaptive delta ²¹⁰modulation. Compare delta modulation with adaptive delta modulation. b) What is Nyquist criterion of zero ISI? Explain. 	(10) (5)
Q4	a) Determine the bandwidth required for M-ary FSK system. Draw the geometrical representation of M-ary FSK signals and find out distance between the signals.b) What is eye pattern? How is eye pattern obtained on CRO?	(10) (5)
Q5	 a) Give a block schematic for generation and reception of M-ary PSK. b) In a binary PCM system, the output signal-to-quantizing-noise ratio is to be held to a minimum value of 40 dB. Determine the number of required levels and find the corresponding output signal to quantizing noise ratio. 	(10) (5) ²¹⁰
Q6	 a) Explain working principle of the T1 digital system. How frame synchronization is achieved in this system? b) What do you mean by an optimum filter? Derive its transfer function. 	(10) (5)
Q7	 a) ²¹⁰Write short notes on Multiplexer and Regenerative Repeater. b) Why timing extraction is required in a digital communication system? Explain any scheme for this. 	(10) (5)
Q8	 a) Draw the signal space representation of QPSK and BPSK signals. Show that for the same data rate and same bit energy they have the same BER probability on the same AWGN channel, although one of the signals occupy half the bandwidth. b) What is matched filter? Find out its probability of error 	(5)
Q9	 a) What is ISI? Explain the causes of ISI. Enumerate methods to take care of it. Is it detrimental to a communication system's performance? b) Given a sine wave of frequency f_m and amplitude A_m applied to a delta modulator having step size Δ. Show that the slope overload distortion will occur if A_m> ^Δ/_{2πfmTs}. Where T_s is the sampling period. 	(10)
	210 210 210 210 210 210	210