Reg	gistra	tion No :								
Tota	al Nu	mber of Paç	jes : 02							B.Te EC43
210		210		AL COMI BRAN T M	MUNICAT	s:70	HNIQUE		210	EC43
210		Answer Que ₂Th				ulsory an margin in			he rest. 210	
Q1.	a) b)	Answer the What is eye p A binary syn binary transr probability of List out the fo	Dattern? W Inmetric ch nit symbo error for a	Vhat is the nannel (BS of X is su an optimur	impact of SC) has a ch that P(n receiver.	transition X=0)=9/10 ?	probability , then wh	at will be	f the	(2 x 1
210	a)	The inputs $s(t) = \begin{cases} 15 \sin t \\ 15 \sin t \\$	$1(4\pi imes 10^6)$ ill be the p	beak ampli	tude of the	, filter outpu		given	by	
	f)	Sketch the si In a basebar signaling. Us inter-symbol	nd commu ing a raise interferen	unication I ed cosine	ink, freque pulse with	ncies up-to 50% exce	o 3500 Hi ss bandwi	idth and fo	or no	
210	g) h)	symbol per so What is WMF Let $g(t) = e^{-t}$ to h(t), then f	⁻ and wha ^{-2πt²and h}	n(t) is a filt	er matche		²¹⁰ f g(t) is ap	oplied as	input	
	j)	Differentiate A communic SNR >>1, b constant, what	ation cha andwidth	nnel with B and ca	AWGN op apacity C ₁ .	erating at If the SN	a signal IR is tripl	to noise	ng B	
210 Q2.		Derive the d		•	of the po	wer specti	210 ral density	/ of a diç	210 gitally	(5)
210		modulated si Digital inform additive Gau W/Hz. Deter channel for for which is dete	nation is ssian nois mine the our-phase	to be tra se channel maximum PSK, bina	with a bain rate that ary FSK, a	ndwidth of t can be t	100 kHz a transmitte	and N ₀ = d through	10 ⁻¹⁰ 1 the	(5)
Q3.	a)	A speech sig per sample. baseband ch transmission	The result annel via	ing binary M-level I	data are t	hen transm	nitted throu	ugh an A\	NGN	(5)
	b)	A digital com (regenerative the information the probabilit	municatio) repeate on. If the	n system o ers. Binary overall er	consists of antipodal nd-to-end e	signals ai error proba	re used fo bility is 1	or transm 0 ^{−6} , deter	itting mine	(5)

0.1

Q4.	a)	Consider a binary digital communication system with equal likely 0's and 1's. When binary 0 is transmitted the voltage at the detector input can lie between the levels -0.25 V and + 0.25 V with equal probability, but when binary 1 is transmitted the voltage at detector can have any value between 0 and 1 V with equal probability, If the detector has a threshold of 0.2 volt, then find the average bit error probability.	(5)
210	b)	A discrete-time memory-less Gaussian source with mean 0 and variance σ^2 is to be transmitted over a binary symmetric channel with crossover probability ϵ .	(5)
		 (i) What is the minimum value of the distortion attainable at destination? (ii) If the channel is discrete-time memory-less additive Gaussian noise with input power P and noise power σ²n, what is the minimum attainable distortion? 	
210		(iii) If channel is not memory-less, then what will happen to distortion in transmission over the channel and why?	
	a) b)	Explain the performance characteristics of DFE and compare it with MLSE. A 4-kHz band-pass channel is to be used for transmission of data at a rate of 2000 bits (a 15^{-10} M/l l is the anastral density of the additive zero.	(5) (5)
		9600 bits/s. If $\frac{1}{2}$ N ₀ = 10 ⁻¹⁰ W/Hz is the spectral density of the additive zero- mean Gaussian noise in the channel, determine the average power that	
210		achieves a bit error probability of 10^{-6} . Use a signal pulse with a raised cosine spectrum having a roll-off factor of at least 50 %. ²¹⁰	
Q6.	a)	A rate $\frac{1}{2}$ convolutional code with d _{free} = 10 is used to encode a data sequence	(5)
		occurring at a rate of 1000 bits/s. The modulation is binary PSK. The DS spread spectrum sequence has a chip rate of 10 MHz i. Determine the coding gain. ii. Determine the processing gain.	
210	b)	iii. Determine the interference margin assuming an $\varepsilon_b / J_{o_0} = 10$ Explain the System for acquisition of an FH signal	(5)
Q7.		Explain the generation of Gold and Kasami sequences with neat block diagram An FH binary orthogonal FSK system employs an m = 15 stage linear	(10)
		feedback shift register that generates a maximum-length sequence. Each state of the shift register selects one of L non-overlapping frequency bands in	
210		the hopping pattern. The bit rate is 100 bits/s and the hop rate is one hop per bit. The demodulator employs non-coherent detection.	
		 (a) Determine the hopping bandwidth for this channel. (b) What is the processing gain? (c) What is the probability of error in the presence of AWGN? 	
Q8.	a)	Write short answer on any TWO : Differentially Encoded PSK Signaling	(5 x 2)
0.4.0	b) c) d)	DSSS and FHSS Optimum ² detector ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰	