210 210		Answer Que	6 ^t	^h Se ADV		ED N BRA Tir Ma Q.(ich is	IECH NCH ne:: x Ma CODI s cor	ANIC I : MI 3 Hou rks : E : C4 npuls	CS O ECH urs 70 124 sory	F SC and	oLIDS any f	S five f		B.Te PCME4 est.	
Q1		Answer the State and bri Distinguish b How do you	follow efly ex etwee find th	/ing (kplain en thir e def	quest the the the the the cylin	ions heore der a n in u	: m of ` nd thi nsym	Virtua ick cy metric	l Wor inder	k		, ma		(2 x ⁻	10
210	d) e) f) g) h) i)	Define Shea How do you initial curvatu Write the Win What do you State the Ma Write down explaining th Define FRP	locate ire? nkler-E mean xwell's the Ec e term	e the Bach t by S s theo quatio ns use	neut formu stress orem o ns of	ral ax la wit Conc of rec	kis in h exp entra iproca	bend lanati tion F al rela n in 3	on of actor tions.	the te ? Wh	erms at is i nal eli	used ts imp	portance? ty problems		
210 Q2		What do you 2 m suppor concentrated determine th	ts a u I load	niforr P =	mly d 6 kN	istribu I at i	uted I ts fre	oad o e eno	of inte d. Us	ensity ing (/ w = Castig	= 4 k Iliano	N/m and a a's theorem	a .)
Q3 210		Define strain are subjecte is hollow with they can abs	d to ui n insid	niforn e dia	n tors meter	ion. T [.] <i>d</i> /2.	he fir What	st sha ∶is∘the	aft is e ratio	solid o of tł	while ne str	the ain e	second one nergies tha	Э.)
Q4		A thick walle a fluid at ar minimum inte section. Also distribution a	n inter ensitie o skete	nal p s of c ch th	oressu circum e rad	ire of nferen ial sti	[:] 10 itial st	MN/m tresse	² . Ca s and	ilcula 1 radi	te the al stre	e ma esses	ximum and across the	d e)
210 Q5		Write the ex A simply sup The load act vertical direct and web is 1	portects thro tion.	d I-be ugh t Deter	am of he ce	¹ 2-m ntroic	span I, the	eutra carrie line c	es a c of acti	entra ion is	nsymr I load inclir	l of 4 ned a	cal bending kN (Fig.1) it 30 ⁰ to the	e)
Q6 210		A crane hoc inside and 3 hook carries inside edge edge. Deter section.	0 mm a ver of the	wide tical I secti	outsic oad c on. T	de. Th f 20 he ce	nickne kN wl ntre o	ess of nose of cur	the s ine o vature	ectio f acti e is 6	n is 6 on is 0 mn	0 mn 50 m n fron	n. the crane nm from the n the inside	9))

210	Q7 Briefly explain the Strain Compatibility Equations in 3-dimensional elasticity. The state of stress at a point is given by the following stress components in kPa $\sigma_x = 200$, $\sigma_y = 100$, $\sigma_z = 50$, $\tau_{xy} = 30$, $\tau_{yz} = 20$, $\tau_{zx} = 40$. Determine the principal stresses and principal planes. ²¹⁰ 210 210 210										
	Q8	(a) Draw and e(b) Briefly expl(c) Define the	O from the follow explain the salient ain why sharp cor term laminate of c explain Principal S	features of S-N ners in loaded omposite mate	components are a rials.	voided	(2 x 5)				
210	210	210	4 kN	210	210	210	210				
210	210	210	210	80 mm	160 mm	210	210				
210	210	210	2	210 >	210	210	210				

Figure 1

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210	210	210	210	210	210	210	210