Regi	istra	ation No :	
Tota	l Nu	umber of Pages : 03 210 210 210 210 210	B.Te PEE6J(
		6 th Semester Regular Examination 2017-18 CONTROL SYSTEM ENGINEERING - II BRANCH : ELECTRICAL Time : 3 Hours	r LL OS
210		Max Marks : 100 Q.CODE : C433 Answer Part-A which is compulsory and any four from Part-B. ²¹⁰ The figures in the right hand margin indicate marks.	
Q1		<u>Part – A (Answer all the questions)</u> Answer the following questions: <i>multiple type or dash fill up type</i>	(2 x 1
	a)	A signal described $byx(t) = 100 \sin 15t + 50 \cos 25t$, and then sampling	
210	b)	frequency based on sampling theorem is The final value of the following pulse transfer function is $f(z) = \frac{5z^3 - 4z^2 + 6z}{z^3 - 3z^2 + z}$	
	C)		
	d)	If $H(s) = \frac{1}{s(s+1)}$, then $H(z) =$	
	e)	A linear time-invariant continuous-time system described by	
210		$\frac{dX}{dt} = \begin{bmatrix} 2 & 1 \\ -1^{\circ} & 1 \end{bmatrix} X + \begin{bmatrix} 1 \\ 2 \end{bmatrix} U_{210} $ 210 210 210	
	f)	Is the system stable (Yes/No) The poles of the transfer function of a system lie at -1, -3 and -7. Then Eigen values of the system are	
	g)	The expression to determine the transfer function for a system with state	
210	h)	space representation $\dot{X} = AX + BU$ and $Y = CX + DU$ is A network comprises of 2 inductors, 1 capacitors and 1 resistors. The current across different inductors are linearly independent and voltage across different capacitors is linearly independent as wellno. of	
	i)	states are necessary to describe the network in state variable form. For a nonlinear system, phase trajectory of a singular point will be (Nodal point/ Saddle Point/Focus Point/ Vortex Point) type if the eigen values are $-4 \pm j7$	
	j)	For a system described by Vander Pol's differential equation	
210		$\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt^0} + x = 0$ The phase trajectory of the system exhibits a (stable/unstable) limit cycle behavior.	
Q2	a)	Answer the following questions: Short answer type State the difference between the 'Differential equation' and 'Difference equation'	(2 x 1
		equalion	

210	210		210 21	210	210	2	210	210
210	210	e) f) g) h) i)	State the Initial value theor z-domain. Derive the expression for th What do you understand by What do you mean by out controllability? What do you understand by Is the assessment of sta systems conservative? Just What do you mean by phas	e Z-transform of uni r limit cycle? out controllabilityan r Jump resonance? bility by direct me tify your answer.	it ramp signal. Id how is it diff thod of Lyapu	erent from stat	te	210
210	Q3 10	a)	Solve the following different	6 (Answer any four ce equation by use $a + 1 + 6x(k) = 0$,	of the z transfor		²¹⁰ (10)	210
		b)	Find the Z- transform of $x(t)$	$) = e^{at} Cos \omega t$			(5)	
210	Q4 210	-	Consider the following char z^3 Determine whether any of the unit circle centered at the Also, comment upon its sta	+ $2.1z^2$ + $1.44z$ + 0. the roots of the chance origin of the z plane	aracteristic equ	ation lie outsic	(10) le	210
		b)	Find the inverse z transfom	the function by I $X(z) = \frac{2z+4}{(z-1)(z-4)}$			(5)	
210	Q5 ¹⁰	a)	Consider a control system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -3 & -5 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$ Compute the state transition $x(t)$ for t>0.	$\begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} [u]; \qquad \begin{bmatrix} x_1(x_2) \\ x_2(x_3) \end{bmatrix}$		nit step	210 (10) 9.,	210
		b)	A discrete-time system has		•		(5)	
210	210		²¹⁰ X Use Cayley-Hamilton appro	$(\mathbf{k} + 1) = \begin{bmatrix} 0 & 2 \\ -6 & -7 \end{bmatrix}$ each to find out its st			210	210
	Q6	a)	A regulator system has the $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} =$	plant described by $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$\left]+\begin{bmatrix}0\\0\\1\end{bmatrix}[u] ight.$		(10)	
210	210		Design a state variable fee poles at $-2 \pm j$ 5 and -6 .	edback controller w	hich will place	the closed loo	pp ₀	210
		b)		$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$			(5)	
210	210		210 21	$y = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	210	:	210	210

210	210	210	210	210	210	210		210
210	Q7 a)	 i) Find out the eig ii) Find out the eig iii) Find out the eig iii) Find out the mo iv) Find out the dia 	$A = \begin{bmatrix} 0\\ 3\\ -12 \end{bmatrix}$ en values en vectors dal matrix	1 0 0 2 -9 -6]	210	210	(10)	210
	b)	Derive the state space	equation from th $\frac{10(s)}{(s+4)(s+1)}$		tion		(5)	
210	Q8 a)	What are singular point singularity with sketcher focus, unstable focus, w	nts in a phase es - Stable node	plane? Explai			(10)	210
210	b)	Draw the phase plane to the when the initial condition	$\frac{d^2x}{dt^2} + \sin^2 t$	nx = 0.7		-	(5)	210
	Q9 a)	 i) Define a) Stable system asymptotically stable system ii) State and explain the analysis. 	/stem	-	-	-	(10)	
210	210 b)	Check th <u>e</u> stability of th	ie system descril $\dot{x}_1 = \dot{x}_2 = -x_1$	- x ₂	210	210	(5)	210