_		
Total N	lumber of Pages : 02	B.T PCEE
210	²¹⁰ 6 th Semester Back Examination 2017-18 COMMUNICATION ENGINEERING BRANCH : CSE, EEE, ELECTRICAL Time : 3 Hours Max Marks : 70 Q.CODE : C568	
210	Answer Question No.1 which is compulsory and any five from the re The figures in the right hand margin indicate marks. Answer all parts of a question at a place.	
Q1 a)	Answer the following questions: Write at least two channel models equations for the analysis and design of communication systems.	(2 x
b)	•	
210 C)	For a low-pass signal with a bandwidth of 5000 Hz, what is the minimum sampling frequency for perfect reconstruction of the signal? What is the minimum required sampling frequency if a guard band of 1000 Hz is required?	
d)	Hilbert transform.	
e)	The message signal m(t)=2 cos400t + 4 sin(500t+ $\frac{2\pi}{3}$)modulates the carrier signal c(t)=A cos(8000 π t), using DSB amplitude modulation. Find power content of the modulated signal.	
²¹⁰ f)	What is the total channel bandwidth required to transmit the video and audio signals and justify the answer?	
g)	guarantees that all the modulated signal power is contained in the sidebands and no power is transmitted at the carrier frequency.	
h)	multiplexed using TDM. What is the minimum bandwidth required to transmit this TDM signal.	
²¹⁰ i)	then determine the minimum sampling frequency required to prevent slope overload , assuming that the step size of the modulator is 0.2π .	
j)	For PCM with n=8, determine the output SNR for a Gaussian signal.	
Q2 a)	driven by the input $x(t) = e^{-\beta t}u_{-1}(t)$. It is assumed that α , $\beta > 0$. Using frequency domain analysis, find the output of the system. Is the output power-type or	-
b)	energy type? I find its power of energy.	(
Q3 a)	Let X(f) = 0 for $ f \ge W$. Let x(t)be sampled at multiples of some basic sampling interval T _s , where T _s $\le \frac{1}{2W}$, to get the sequence $\{x(nTs)\}_{n=-\infty}^{+\infty}$ Then reconstruct	(
210	the original signalx(t)from the sampled values by using the reconstruction formula.	
b)	Determine the Fourier transform of the following signals (α is positive).	(

210			210	210	210		210	210		210
Q4	a) b)	AM si mather output	gnal that ha matical expre in terms of m	receiver with as a modulat ssion for the (t). Is the audio ng method of F	ion wavefo audio signa output diste	orm given by al that appea orted?	y m(t). Fi	nd the	(5) (5)	
0 -				-	-					
Q510		chromi A SSB	nance and lur AM signal is os 2000πt +2 Determine th Determine sideband of t	sion of primary ninance signal generated by r sin 2000 π t. Th e signal $\hat{m}(t)$. the (time he SSB AM sig e magnitude sp	s, with suita nodulating a e amplitude domain) gnal.	ble block diag an 500-kHz ca of the carrier expression	gram. arrier by the r is A _c =100. for the	upper	(5) (5)	210
210 Q6 210	a) b)	Explair A unip over a and th	n the methods olar NRZ line channel. The e signal con ms. For the r What is the b What is the e	of demodulation code is convert number of po sists of rectar nultilevel signa	210 on of PAM s erted to a m ssible value ngular pulse I, te?	signals. nultilevel signa es in the mult es that have	al for transr ilevel signa	210 mission Il is 32,	(5) (5)	210
Q7			Determine the avoid slope of Determine the of 4 kHz. Determine the sinusoidal, we lf the acception	on DM system, ignal amplitude ie minimum va overload. e granular nois ie SNR of the ith rms bandwi table level of e channels on link for maxi	e is 2. alue of the se power, if system, as dth of1.3 kH SNR is 19 can be	step size of the voice sig ssuming the Iz. dB, then de transmitted	the modul nal has bar voice signa terminehow over the	lator to ndwidth Il to be ₂₁₀	(10)	210
Q8 210	a) b) c) d)	Sampli Compa	ing of band-lin arison betwee ature-carrier n	n PCM and DM			210	210	(5 x 2)	210
210			210	210	210		210	210		210
										0.1.0