Regist	ration No :	
	umber of Pages : 03	B.Tec
	6 th Semester Regular Examination 2017-18	PEL6I1
	COMMUNICATION ENGINEERING	
	BRANCH : EEE	
	Time : 3 Hours Max Marks : 100	
	Q.CODE : C153	
210	Answer Part-A which is compulsory and any four from Part-B.210	
	The figures in the right hand margin indicate marks.	
	Part – A (Answer all the questions)	
Q1	Answer the following questions: <i>multiple type or dash fill up type :</i>	(2 x 10
a)	If the signal f(t) has energy E, the energy of the signal f(2t)	
b)	(i) E (ii) $2E$ (iii) $\frac{E}{2}$ (iv) $\frac{3E}{4}$	
₂₁₀ b) c)		
C)	with frequency f_m and peak amplitude E_m . If the sampling frequency is 30 kHz,	
-0	for slope over load to happen, $f_m = __\ and E_m = _\$.	
d)	For the DSB-modulated signal, the envelope of the resulting bandpass signals is proportional to the <i>absolute value</i> of the message signal.Then	
	will be its mathematical representation.	
e)		
210	1600 kHz, with intermediate frequency of 450 kHz. Let R= $\frac{C_{max}}{C_{min}}$ represent the	
	required capacitance ratio of the local oscillator and I represents the image frequency (in kHz) of the incoming signal. Then what will be R	
	and I?	
f)	0	
	the Nyquist rate and quantized into 256 level using a μ -law quantizer with μ = 2 5. The signal-to-quantization-noise ratio will be	
g)	A TDM link has 20 signal channels and each channel is sampled 8000	
210	times/sec. [®] Each sample is represented by seven binary bits and contains an additional bit for synchronization. The total bit rate for the TDM link is	
	kbps.	
h)	A speech signal has a total duration of 20 sec. It is sampled at the rate of 8	
	kHz and then PCM encoded. The signal-to-quantization noise ratio is required to be 40 dB. The minimum storage capacity needed to accommodate this	
	signal is Kbytes.	
210 i)	Two signals bandlimited to 3 to 5 kHz are to be time division multiplexed. The maximum ¹⁰ permissible ²¹ interval between two successive samples ⁰	
''		
j)	Ten telemetry signals, each of bandwidth 2 kHz, are to be	
	transmittedsimultaneously by binary PCM. The maximum tolerable error in sampleamplitudes is 0.2% of the peak signal amplitude. The signals must	
	besampled at least 20% above the Nyquist rate. Framing and	
	synchronizingrequires an additional 1% extra bits.The minimum transmission bandwidth is	
210	(i) 218.16 kHz 210 (ii) 468.32 kHz 210 210	
	(iii) 136.32 kHz (iv) None of the above	

Q2		Answer the following questions: Short answer type :	(2 x 10)
	a)	Write Dirichlet sufficient conditions for the existence of theFourier series expansion.	
	b)	What is companding? What is its significance?	
210	C)	Draw the neat labeled diagram for the spectral characteristics of black-and- white television signal.	
	d)	Suppose that the message signal is given as $m(t) = 8 + 4 \cos 2\pi t + 8 \cos 4\pi t$ + 8 cos $20\pi t$. Specify the frequency-response characteristic of a VSB filter that passes the upper sideband and the first frequency component of the lower sideband.	
	e)	The output signal from an AM modulator is: $u(t) = 5\cos(1800\pi t) + 20\cos(2000\pi t) + 5\cos(2200\pi t)$. Determine the modulation index.	
210	f)	Why flat top PAM preferred over natural PAM?	
	g)	What are the significances of eye pattern taken by a CRO?	
	h)	In a DSB system the carrier is $c(t) = A \cos 2\pi f_c t$ and the message signal is given by $m(t) = \operatorname{sinc}(t) + \operatorname{sinc2}(t)$. Find the frequency domain representation and the bandwidth of the modulated signal.	
	i)	Differentiate between FDM and TDM.	
210	j)	Differentiate between SSB and VSB modulations.	
		Part – B (Answer any four questions)	
Q3	a)	Explain all the basic Properties of the Fourier Transform.	(10)
	b)	What is quadrature carrier multiplexing? Explain with neat block diagram.	(5)
Q4 210	a)	An analog signal is to be converted into a PCM signal that is a binary polar NRZ line code. The signal is transmitted over a channel that is absolutely bandlimited to 4 kHz. Assume that the PCM quantizer has 16 steps and that the overall equivalent system transfer function is of the raised cosine-rolloff type with $r = 0.5$. (a) Find the maximum PCM bit rate that can be supported by this system	(10)
		without introducing ISI.	
		(b) Find the maximum bandwidth that can be permitted for the analog signal.	(5)
210	b)	Show that "the time-average autocorrelation function of a periodic signal is itself periodic with the same period as the original signal, and its Fourier series coefficients are magnitude squares of the Fourier series coefficients of the original signal".	(5)
Q5	a)	(i) Assume that an AM receiver with an envelope detector is tuned to an SSB-AM signal that has a modulation waveform given by m(t). Find the mathematical expression for the audio signal that appears at the receiver output in terms of m(t). Is the audio output distorted? 210 21	(10)
210			
210		(ii) An audio signal with a bandwidth of 10 kHz is transmitted over an AM transmitter with a carrier frequency of 1.0 MHz. The AM signal is received on a super-heterodyne receiver with an envelope detector. What is the constraint on the RC time constant for the envelope detector?	
210	b)	transmitter with a carrier frequency of 1.0 MHz. The AM signal is received on a super-heterodyne receiver with an envelope detector. What is the	(5)

0.1 -

(10)	(i) Draw a block diagram of a super-heterodyne FM receiver that is designed to receive FM signals over a band from 144 to 148 MHz. Assume that the receiver is of the dual-conversion type (i.e., a mixer and an IF amplifier, followed by another mixer and a second IF amplifier), where the first IF is 10.7 MHz and the second is 455 kHz. Indicate the frequencies of the signals ^o at different points on the diagram, and, in particular, show the ^o frequencies involved when a signal at 146.82 MHz is being received.	a)	Q6 210
(5)	 (ii) Replace the first oscillator by a frequency synthesizer such that the receiver can be tuned in 5-kHz steps from 144.000 to 148.000 MHz. Show the diagram of your synthesizer design and the frequencies involved. Derive the time domain representation of a SSB AM signal. 	b)	
(10)	Design a TDM PCM system that will accommodate four 300-bits (synchronous) digital inputs and one analog input that has a bandwidth of 500 Hz. Assume that the analog samples will be encoded into 4-bit PCM words. Draw a block diagram for your design, indicating the data rates at the various points on the diagram. Explain how your design works.	a)	Q7
(5)	Explain the Armstrong method of FM generation.	b)	
(10)	 A unipolar NRZ line code is converted to a multilevel signal for transmission over a channel. The number of possible values in the multilevel signal is 32, and the signal consists of rectangular pulses that have a pulse width of 0.3472 ms. For the multilevel signal, (a) What is the baud rate? (b) What is the equivalent bit rate? (c) What is the null bandwidth? (d) Repeat (a) to (c) for the unipolar NRZ line code. 	a)	Q8 10
(5)	With neat sketch, explain the generation of DM signals.	b)	210
(10)	 A DM system is tested with a 10-kHz sinusoidal signal, 1 V peak to peak, at the input. The signal is sampled at 10 times the Nyquist rate. (a) What is the step size required to prevent slope overload and to minimize granular noise? (b) What is the PSD for the granular noise? 	a)	Q9
	 (c) If the receiver input ₂ is bandlimited to 200 kHz, what is the average signal–quantizing noise power ratio? 		210
	Draw various line code formats for the information {1 0 1 1 0 1}	b)	

210 210 210 210 210 210 210 210 210