210		210	210	210	210	210
Reg	istrat	ion No :				
Tota	l num	ber of pages:0)4			B.Tech.
210			Time Max M			PCE4I003
210	As		which is com res in the right- notations and a	pulsory and a hand margin i any missing da	ndicate marks ata wherever n	. 210 ecessary.
Q1.		Answer the foll	Part – A (Answ owing question	<u>ver all the quest</u> s :	<u>ions)</u>	(2 x 10)
	(a)		lowing systems is		n (A) and closed	• •
210			? ned in a Dewar fla ned in a sealed co		210 heated	210
	4	i. A and B ii. A and C iii. B and C iv. C and B	ned in a beaker o		-	
210	(D)	What is the amo an ideal gas isot i. 5707.7 ii. 3293 iii. 57.07 iv. 560.8	thermally at a ten			
	(c)	In the P-T diag	ram at triple poi	int which of the	following lines	has the
210		highest slope? i. S [_] L ii. L-V	210	210	210	210
		iii. S-V	4h a a a			
	(d)	i. Critical p	m of a real gas go		nflexion at the	
210		iii. Triple po	int 210	210	210	210
		iv. None of t Absolute value		perfect crystalli	ne substances	
	(e)	calculated by us i. First law ii. Second l	ing of thermodynami aw of thermodyn	ics amics		
	(e)	calculated by us i. First law ii. Second l	ing of thermodynami aw of thermodyn / of thermodynam	ics amics		

210	210	210	210	210	210	210	210
	(f)	ii. Fugacity	s equal to pressu coefficient is equa s always equal to nese	l to pressure			
210	²¹⁰ (g)	i. Temperatii. Pressureiii. Compositiv. All of these	ion ie			210	210
210	(h) 210	iii. Temperat iv. None of t	ure only ure and pressure ure, pressure, and nese	210 d Gibbs free end	210	210	210
	(i)	i. Molar Gib ii. Molar Gib		ly d excess Gibbs Gibbs free ene	ergy, and excess		
210	210 (j)	iv. Any partia The activity coef assumed to be e i. Vapour pr ii. Critical te	al molar property ficient of benzene	e zene	210 e-toluenemixture ca	an be	210
210	210	210	210	210	210	210	210
	Q2. (a) (b) (c) (d)	Write the limitation Differentiate betw An equilibrium lion an azeotrope. Ju Steam at 400 ba	stify. ar and 500°C is t	nermodynamics d real gas. described by F hrottled through	Raoult's lawcan't e n an adiabatic pre	ssure	
210	210 (e) (f)	after expansion? Helium-laced ga divers.Why?	ases are used Properties.How E	as breathing	e tempe <u>ra</u> ture of s media for deep energy is related	sea	210
210	(g) (h) 210 (i) (j)	What do you mea Express partial n T and P of the m Define Raoult's la What are the v	an by reaction coo nolar temperature ixture. ²¹⁰ aw. Write the limita alues of total Gi	and partial mo	lar pressure in ter 210 w. nd its differential	210	210
210	210	chemical reaction	at equilibrium?	210	210	210	210

210		210	210	210	210	210		210
			Part – B (Answ	er any four quest	tions)			
Q3.	(a)	equilibrium. Spe phase. The vapo	active system c cies 2 is very l or phase contains	ontains species 1 light gas, essentia s both species 1 a he system, which	and 2 in vapor ally insoluble in and 2. Some add	liquid litional	(4)	
210		initial T ² and P. A of liquid increase	s a result of the , decrease, or re	process, does the main unchanged?	total number of Explain it.	moles ²¹⁰		210
	(b)	energy decrease	es by 12 kJ. How	Ided to a closed s w much energy is change of state bu d?	transferred as	work?	(3)	
210	(c)	Liquid water at arbitrary scale) o i. What is it	180°C and 100 f 762.0 kJ/kg and s enthalpy?	2.7 kPa has an i d specific volume o	of $1.128 \text{ cm}^3/\text{g}$.	210	(8)	210
		where its	Ų.	he vapor state at is 2784.4 kJ/kg an J and ∆H.				
Q4.	(a)	B= -388 cm ³ /mo	l.Calculate mola	ent of isopropano r volume (V) and C and 10 bar by us	compressibility	factor	(5)	
210			equation and	o una ro⊴gar by ao	ang ₂₁₀	210		210
		function of densi bar, $\kappa = 44.18 \times 10^{-1}$	ity ρ and its part 0 ⁻⁶ bar ⁻¹ . To wha	ity and isotherm ial derivatives. Fo t pressure must w ? Assume that κ is	or water at 50°C ater be compres	and 1 sed at	(10)	
Q5.	(a)	each case the ra discarded to the	ates at which hea cold reservoir.	duce power of 95 at is absorbedfrom s between heat re	n the hot reservo	oir and	(10)	210
			al engine operate ermal efficiency η	es between the sa	me heat reservo	irs but		
210	(b)	Derive the expres	ssion for entropy	changes₀of an ide	eal gas210	210	(5)	210
Q6.		benzene(1)/tolue i. Given x ₁ :	ne(2) system: = 0.33 and T=10	w, do the followir 0°C, find y₁ and P 20 kPa, find y₁ and	-	or the	(15)	
210			of benzene and	l toluene can be		ntoine 210		210
		For benzene, in	г _{– 1} кги = 13./81	T/K = 55578				

	210		210 210	210	210	210	210
)	Q7. 210		and	in a closed system. In bar; in step 2-3, pres step 3-4, volume deci gas returns adiabaticall)R. 210	step 1-2, pressure sure decreases at reases at constant y to its initial state. ²¹⁰ tates 1, 2, 3, and 4,	210	210
)	Q8. 210		Derive the expression relati equilibrium constant. Explain constant by using this exp reaction.	the effect of temperat	ure ₂₁ on equilibrium		210
)	Q9. 210	(a) (b)	Write a short note on Theorem Develop expression for the mo of reaction coordinate for a s mol O_2 and undergoing the rea $4NH_3(g)+5O_2(g)$	ble fraction of reacting sp ystem initially containing	pecies as a function	(5) (5) 210	210
		(c)	Write a short note on Lewis/Ra	andal rule.		(5)	

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210