
Reg	jistr	ation No :												
Tota	al Ni	umber of Pa	ges :	02	210			210			210			B.Tech.
210		210	4 ^{ti}	^h Se		er Ba	ck E		inat	ion 2			210	PCMT4205
					TRAN	SPO	RT P	HEN	IOM	ENO				
					BR	ANCF Tim	1:M e:3		•	ME				
						Мах	Ma	rks :	70					
210		Answer Qu	ostion	No	1 whi					and	anvi	ivo fi	rom the re	et
210			ne figu					-	-		-			51.
			Ār	ıswe	er all	parts	of a	que	stion	n at a	plac	e.		
Q1		Answer the	follow	ving o	questi	ons:								(2 x 10)
	a)	Write down		feren	tial he	at bal	ance	equ	ation	for a	n uns	steady	state with	
	b)	heat genera What is the		d dim	ensio	n of kii	nems	atic vi	اعمروا	tv?				
210	c)	Find out the										of diar	neter 4 cm	
		having center			-									
	d) e)	State Fick's What is Gra				usion	with p	prope	er ma	thema	atical	expre	ssion.	
	e) f)	Briefly expla				of Re	vnol	d's ni	umbe	r.				
	g)	Differentiate		-			-				id.			
210	h)	State and write the mathematical expression of Bernouli's equation.												
	í) j)	What is emis Difference b	•			•				extre	me ei	nd of e	emissivity.	
	J/	Difference b	ClwCCI	i biac		yanu	gicy	bouy	•					
Q2	a)	The lining on plate as sho												(5)
		refractory is												
		state heat f												
210		resistance (uiciii		
						1		1						
				8			ory	ate	1-	2.12				
					1273 K		refractory	steel plate	4/	3 K				
210)	210			Furnac	e	5	ste	An	nbient	210		210	
								: 						
							X	(
		Given data:	Therr	nal c	conduc	ctivity	of re	efrac	tory	= 1.2	W.n	n⁻¹K⁻¹	Thickness	
		ofrefractory		= 80) mm	Therr								
		Thickness o	1 1 - 1	- 1 - 1	_ 4									

		210	210	210	210	210		210		
Q3	a)	The velocity distribution given by $u = 5 \sin (y = 0.05 m)$					(5)			
	b)	Derive the Navier st	okes equation in (Cartesian coor	dinate.		(5)			
Q4 210	a)	A steel plate of 20 mm thick and $1m^2$ surface area is quenched from a temperature of 8000 C in water at 300° C. calculate the time required to obtain the temperature of 4000 C. Given h = 60 Wm ⁻² K ⁻¹ , k = 30 Wm ⁻¹ K ⁻¹ , α = 0.023 m ² h ⁻¹ .								
	b)	Explain lumped hea	t capacity method	for transient of	conduction of heat.		(5)			
Q5	a) b)	Briefly explain the si Explain the mechan	-		ena in metallurgy.		(5) (5)			
Q6 ²¹⁰	a) b)	Briefly explain nucle Derive Hagen-Poise	-			210	(5) (5)	210		
Q7	a)	Derive Navier-Stoke	's equation along	x oxio			(5)			
<u> </u>	b)	Differentiate betwee transfer.	• •		prced convection	of heat	(5) (5)			
Q8 ¹⁰	b)	Differentiate betwee	en natural conve		prced convection	of heat		210		
	b) a)	Differentiate betwee transfer. Write short answer Biot number	en natural conve	ection and fo			(5)	210		
	b) a) b)	Differentiate betwee transfer. Write short answer Biot number Kirchoff's law of the	en natural conve	ection and fo			(5)	210		
	b) a)	Differentiate betwee transfer. Write short answer Biot number	en natural conve	ection and fo			(5)	210		
	b) a) b) c)	Differentiate betwee transfer. Write short answer Biot number Kirchoff's law of ther Lambert's law	en natural conve	ection and fo			(5)	210		
	b) a) b) c) d)	Differentiate betwee transfer. Write short answer Biot number Kirchoff's law of ther Lambert's law	en natural conve	ection and fo			(5)	210		
Q8 ¹⁰	b) a) b) c) d)	Differentiate betwee transfer. Write short answer Biot number Kirchoff's law of ther Lambert's law Nusselt number	en natural conve	ection and fo	210	210	(5)			
Q8 ¹⁰	b) a) b) c) d)	Differentiate betwee transfer. Write short answer Biot number Kirchoff's law of ther Lambert's law Nusselt number	en natural conve	ection and fo	210	210	(5)			

210 210 210 210 210 210 210 210 210

210

(5)