						_
	Number of Pages	s : 02				B. BSCI
210	210		Back Examinat HEMATICS – I ANCH : AERO,	V	8	210-
AUTO	, BIOMED, CHEN N	M, CIVIL, ENV, F. IECH, METTA, N				ECH, MA
			me : 3 Hours ax Marks : 70			
210	210		CODE : C583	210		210
		ion No.1 which i				ie rest.
	The f	igures in the rig Answer all part	•			
Q1	Answer the fol	Iowing questions	-	•		(2
a	Find the error w	hen X = 3.1255678	3 is Rounded into		cant digit.	,-
210		tive real root prese of convergence of				210
d) Write the Cond	ition when Gauss			e the syste	m of
e	linear equations	s. ositive root of the	equation $x^3 - \zeta x$	r + 1 - 0 in r	he interval	(0 1)
e		ons by Newton-Rap		– 0 111		(0,1)
f)		using Trapezoida				
g	- 20 1 1	blled once,find the		rface whose	sum is at	least
	a laula t					
210	eight. 210 What is the rela	tion between Distri	bution function a	210		210
210) What is the rela Let X be a conti	tion between Distri nuous Random va	bution function a riable with distrib	nd Density for the second seco	function. on is	
210 h) i)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$	tion between Distrinuous Random va for $2 \le x \le 5$ and (bution function a riable with distrib) for othervalue o	210 and Density foution function of x,then find	function. on is I 'a' .	
210 h) What is the rela Let X be a conti $f(x) = a(1+x^2) f$	tion between Distrinuous Random va For $2 \le x \le 5$ and 0 variance of binomia	bution function a riable with distrib) for othervalue o	210 and Density foution function of x,then find	function. on is I 'a' .	
210 hj j)	What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and x Then find P(X≥	tion between Distrinuous Random va For $2 \le x \le 5$ and 0 variance of binomia	bution function a riable with distrib) for othervalue o al distribution are	nd Density for oution function of <i>x</i> ,then find 4 and 3 res	function. on is I 'a' . pectively	210
210 hj j)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and w Then find P(X \geq Using Newton's	tion between Distri- nuous Random va for $2 \le x \le 5$ and 0 variance of binomia 1) divided difference	bution function a riable with distrib) for othervalue of al distribution are formula find f(8)	210 and Density for bution function of x , then find 4 and 3 res from the fol	function. on is I 'a' . pectively	210
210 h' i) j) Q2 a)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and x Then find P(X \geq Using Newton's 210 X 5	tion between Distrinuous Random va for $2 \le x \le 5$ and 0 variance of binomia 1) divided difference	bution function a riable with distrib) for othervalue of al distribution are formula find f(8)	and Density for oution function of x , then find 4 and 3 res from the fol 210	function. on is I 'a' . pectively	210
210 h) i) j) Q2 a) 210) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150	tion between Distripuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference $\frac{210}{7}$ 0 392	bution function a riable with distrib) for othervalue of al distribution are formula find $f(8)$ 210 210 210 210 210 210 210 210 210 210	from the fol 210 210 x , then find 4 and 3 res 210 210 210 210 3702	function. on is l 'a' . pectively lowing table	210 210
210 h' i) j) Q2 a) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150) For the function	tion between Distripuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference $\frac{210}{7}$ 392 $\frac{1}{x}$, prove that the	bution function a riable with distrib) for othervalue of al distribution are formula find $f(8)$ 210 210 210 210 210 210 210 210 210 210	from the fol 210 210 x , then find 4 and 3 res 210 210 210 210 3702	function. on is l 'a' . pectively lowing table	210 210
210 h) i) j) Q2 a) 210) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150	tion between Distripuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference $\frac{210}{7}$ 392 $\frac{1}{x}$, prove that the	bution function a riable with distrib) for othervalue of al distribution are formula find $f(8)$ 210 210 210 210 210 210 210 210 210 210	from the fol 210 210 x , then find 4 and 3 res 210 210 210 210 3702	function. on is l 'a' . pectively lowing table	210 210
210 h' i) j) Q2 a) 210 b)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150) For the function and c is equal to	tion between Distripuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference $\frac{210}{7}$ 392 $\frac{1}{x}$, prove that the	bution function a riable with distrib) for othervalue of al distribution are formula find f(8) $\frac{210}{11}$ 13 1452 2366 e third divided di	from the fol $\frac{210}{210}$	function. on is l 'a' . pectively lowing table	210 210
210 h) i) j) Q2 a) 210 b)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150) For the function and c is equal to Evaluate $y_0 = f(x)$	tion between Distri- nuous Random va for $2 \le x \le 5$ and 0 variance of binomia 1) divided difference 210 7 0 392 h $\frac{1}{x}$, prove that the $\frac{1}{abc}$.	bution function a riable with distrib) for othervalue of al distribution are formula find f(8) 210 11 13 1452 2366 e third divided di the following tab	210 and Density for the function of x, then find 4 and 3 res from the fol 210 210 210 9702 fference with ole 210	function. on is l 'a' . pectively lowing table	210 210 t a, b 210
210 h) i) j) Q2 a) 210) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150) For the function and c is equal to Evaluate $y_0 = f(x)$	tion between Distripuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference 210 7 392 $\frac{1}{x}$, prove that the $\frac{1}{abc}$.	bution function a riable with distrib) for othervalue of al distribution are formula find f(8) 210 11 13 1452 2366 e third divided di the following tab	210 and Density for bution function of x, then find 4 and 3 rest from the fol 210 210 210 30702	function. on is 1 'a' . pectively lowing table	210 210 t a, b 210
210 h' i) j) Q2 a) 210 b)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150) For the function and c is equal to Evaluate $y_0 = f(x)$	tion between Distri- nuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference 210 7 0 392 h $\frac{1}{x}$, prove that the $\frac{1}{abc}$.	bution function a riable with distrib) for othervalue of al distribution are formula find f(8) 210 11 13 1452 2366 e third divided di the following tab	210 and Density for bution function of x, then find 4 and 3 rest from the fol 210 210 210 3 9702 fference with ole 210 5 6	function. on is 1 'a' . pectively lowing table	210 210 210 210
210 h' i) j) Q2 a) 210 b)) What is the rela Let X be a conti $f(x) = a(1+x^2) f$ The mean and y Then find P(X \geq) Using Newton's 210 x = 5 f(x) = 150) For the function and c is equal to Evaluate $y_0 = f(x)$ $\frac{x}{y} = 1$ = f(x)	tion between Distri- nuous Random va for $2 \le x \le 5$ and (variance of binomia 1) divided difference 210 7 0 392 h $\frac{1}{x}$, prove that the $\frac{1}{abc}$.	bution function a riable with distrib) for othervalue of al distribution are formula find f(8) 210 11 13 1452 2366 e third divided di the following tab 4 64	rind Density for the fol 210 100 function function function function for x , then find 210 100 1	function. on is 1 'a' . pectively lowing table h argument h argument	210 210 t a, b 210

210	210 210 210	210	210		210
(5)	$x^3 + x - 1 = 0$ in the interval (0,1) ethod .		Find smallest pos after four iterations	a)	Q4
(5)	correct to three decimal places in the method .		Find a root of the interval (0,1) after	b)	
210 (5)	probability density function $f(x) =$	then	$\begin{cases} xe^{-kx}; & 0 < x < \infty \\ 0; & otherwise \end{cases}$		210 Q5
(5)		able X takes the	(a) find the consta If the Random var 2P(X = 1) = 3P(X distribution.	b)	
210 (5)	210 210 210 210 210 210 210 210 210 210	o know if the new plan of a sample of 500 ant difference	director wanted t introduction of a purpose. Out of a		210 Q6
(5) 210	Ent from the following data 210 210 5 6 7 11 13 15		•	b)	210
(10)	-	1, y(0) = 0.5 wit ified Euler meth ge-Kutta metho	a) Using mod		Q7
(5 x 2) 210	tion such that $P(1) = P(2)$, find $P(4)$. y + 2z = 8, using LU decomposition variable whose probability density ≤ 100 .	ble has a poisso g system of equ x + 2y + 3z = 6 $l_{22} = l_{33} = 1?$ n value of the	Solve the following 2x + 3y + z = 9; x method with $l_{11} =$	a) b) c)	Q8 ²¹⁰
210	tion coefficient r = 0.6, find the line	$\ddot{8}$, $\sigma_x = 38$, $\sigma_y =$		d)	210
210	210 210 210	210	210		210