210	210	210	210	210	210	210
Regi	stration No :]	
Total num	nber of pages :	04			B.Tech.	
210		MÁSS T BRANC Time Max I Q.CC	/ Back Examinat RANSFER - II H : CHEM, PT A : 3 Hours Marks : 100 DDE : C666		PCE4I101 210	210
²¹⁰	The figu ssume suitable	ires in the right notations and	pulsory and any -hand margin ind any missing data of a question at a	dicate₂marks. a wherever neo	210	210
01	Anowar the fol		ver all the questio	ons)		
Q1. (a)	Consider distrib (carrier) and E plaitpoint [®] ? i. 0 ii. 1		te C in two partial is the selectivity 210			210
(b) 210	following proble i. Dispersi consum ii. Phase s	tension of a carri ms may appear ? on of the solven ing ²¹⁰ eparation of the lice	er-solvent pair is v It in the carrier b 210 quid-liquid dispersio	pecomes more p	210 Dower-	210
(c)	iv. Heat tra In which of t percolation proc i. Bollman ii. Moving	nsfer is difficult he following equ cess ? extractor belt extractor	esistance becomes iipment does ext	-	by the	
210 (d)	If the solute co	nd extractor oncentrations (on qual, the tie lines a al ng slope	210 solid-free basis) in are	210 In the overflow a	210 nd the	210
210 (e)	Extraction of su i. 60 – 65 ii. 70 – 75 iii. 80 – 85 iv. 90 – 95	gar from sugar be ip in a rotary dryer	et is achieved using	g water at	° C. 210	210
210	ii. 25 – 35 iii. 50 – 70 iv. None of	% %	210	210	210	210

210	210	210	210	210	210	210	210			
	(g)	material at a rate i. Vacuum tr	of 100 kg/h ? ay dryer rotary dryer	y be suitable for	drying a heat-se	ensitive				
210	210	iv. Drum drye	•	210	210	210	210			
	(h)	ii. Less than	reater than the ur the critical moistu ore than the bour	ibound moisture ire						
	(i)	Entropy change for	or adsorption is							
210	210	i. 0 ii. –Ve iii. +ve iv. None of th		210	210	210	210			
210	(j) 210	An adsorption pro i. Exothermi ii. Endotherm iii. Reversible iv. Either i. or	c nic e	210	210	210	210			
1.0				210	2.0	2.0				
	Q2. Answer the following questions :					(2 x 10)				
	(a)	Give a few examples of applications of solvent extraction for wastewater treatment. Can two tie lines intersect within the two-phase region of an LLE diagram ?								
	(b)	-								
210	210 (C)	What are the advantages and problems of carrying out extraction of a solid 210 at an elevated temperature ? Mention the factors influencing the fraction of liquid retained in the								
	(d)	underflow in leaching operation.								
	(e) (f)	extraction ?								
210		hygroscopic solid	in a cocurrent rot	ary dryer.			210			
	²¹⁰ (g) (h)	Can the moisture content of a solid on dry basis be above 100% ? Justify ²¹⁰ ² of answer. What kind of flow strategy is preferred for drying a heat-sensitive substance								
		 (i) Why adsorbents of a small particle size are preferred for liquid separation compared to gas separation ? (j) What is the size range of meso-pores ? 								
210	210	210	210	er any four quest	210	210	210			
	Q3. (a)		senting (6)							
	Q3. (a)	the liquid-liquid ed				senting (6)				
	(b) (c)									
210	210	210	210	210	210	210	210			

Q4. (a) 1000 kg of an aqueous solution containing 30 mass % trimethyl amine (C) and 70 % water (A) is to be extracted using benzene (B) as the solvent. A 3-stage crosscurrent extractor is used. The amounts of solvent (95 % B and 5 % C) to be used in successive stages are 800, 1000, and 2700 kg. Determine the fraction of the solute removed if the stages are ideal. The compositions of the raffinate and the extract (two phases) as well as the tie line data are givenbelow.

A rich phase	XB	0.004	0.00	0.01	0.02	0.03	0.05	0.07	0.13
			6						
	XC	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40
B rich phase	УB	0.95	0.90	0.84	0.78	0.71	0.63	0.50	0.26
	Уc	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40
Tie line data	X _C	0.04	0.06	0.13	0.22	0.39	010		
210		210			5		210		
	Уc	0.04	0.07	0.09	0.15	0.31			

Mention the important factors that govern the selection of a liquid-liquid (3) (b) extractor.

- Q5. (a) Discuss the important factors affecting the rate of leaching of a solute from (5) a solid substance.
 - (b) Oil seeds containing 25 mass % oil, is to be extracted with hexane to (10)reduce the oil content to 0.8 % in the underflow. 1 kg of the solvent is used per kg of the feed. Using the extraction equilibrium data given below, determine the number of stages required.

Overflov	w (100 kg),	solution	Underflow (100 kg), slurry		
W _A (kg)	W _B (kg)	W _C (kg)	W' _A (kg)	W' _в (kg)	W' _C (kg)
0.3	99.7	0.0	67.2	32.8	0.0
0.45	90.6	8.95	67.1	29.94	2.96
0.54	84.54	² 14.92	66.93	28.11	4.96
0.70	74.47	24.83	66.58	25.06	8.36
0.77	69.46	29.77	66.26	23.62	10.12
0.91	60.44	38.65	65.75	20.90	13.35
0.99	54.45	44.56	65.33	19.07	15.60
1.19	44.46	54.35	64.39	16.02	19.59
1.28	38.50	60.22	63.77	14.13	22.10
1.38 210	34.55	₂ 64.17	63.23	12.87	21,23.90
1.48	24.63	73.89	61.54	9.61	28.85

- Q6. (a) Graphically explain different types of moisture in a wet solid. (b) Derive the equation for total drying time.
- A wet solid of 30 % moisture is to be dried to 1.0 % moisture in a dryer. A Q7. (10)(a) laboratory test shows that it requires 8 hours to reduce the moisture content of the same solid to 2.0 %. The critical moisture content is 7 % and 210 the equilibrium moisture is 0.3 %. The falling rate of drying is linear in the free moisture content. Calculate the drying time of the solid if the drying conditions similar to those in the laboratory test are maintained. All moistures are expressed as % of bone dry-mass of solid. (5)
 - Discuss the basis of classification of industrial dryers. (b)

(12)

(5)

(10)

Q8. (a) Discuss the construction and operation of a spray dryer with a neat (7) diagram. A sample of wet solid is taken on a tray $(1 \times 0.6 \text{ m}^2)$ and dried in a stream (b) (8) of hot air (120°C, 0.02 kg water/kg dry air, 4.5 m/s). The initial moisture content of 28 % (dry basis) is to be reduced to 0.5 %. It is known that the critical moisture content is 12 % and the equilibrium moisture is negligible. The falling rate of drying is linear in the moisture content. If the solid loading (dry basis) is 35 kg/m², calculate the drying time. Assume that the air flow is large and its temperature drop across the tray is low. Q9. Discuss the selection criteria of a good adsorbent. (a) (5) (b) The adsorption equilibrium data for the decolourization of an oil with a clay (10)is given by: $Y = 4.5 \times 10^{-4} X^*$, where Y = number of colour units/kg oil and X* = number of colour units/kg clay in equilibrium. 1000 kg²¹ of oil having an ²¹⁰ initial colour concentration of 50 units has to be treated to reduce the concentration to 1 colour unit. The adsorbent has an effective specific surface area of 30 m²/kg and the surface mass transfer coefficient is k_{L} = 5.0×10^{-6} m/s (on the solid phase concentration basis). The density of oil is 900 kg/m³. Calculate the minimum quantity of adsorbent required. Also calculate the required contact time if 1.1 times the minimum amount of adsorbent is used.