210	210	210	210	210	210	210	210
	Registra	ation No :					
210	Total Nu	Imber of Pages : 0)2 210	210	210	210 B. ⁻ PCME	Tech. 210
			Time Max	CTURING PRO : AUTO, MEC e : 3 Hours Marks : 70	DCESSES		
210	210		No.1 which is	hand margin	indicate marks.		210
	Q1	Answer the follow	• •			(2 >	c 10)
210	a) b) ₂₁₀ c)	What is the aspiration What is the primary What is impregnation	function of a rise	r? 210	210	210	210
	d) e)	A cube and sphere under identical con solidification time fo What is upsetting?	ditions. The solid r sphere?				
	f) g)	What is alligatoring' Why hot worked p		g poor surface	finish than cold	worked	
210	²¹⁰ h) i) j)	product? Why carburized flar Why in DCSP dept Write any two functi	h of penetration is		h carbon steels?	210	210
	Q2 a) b)	What is a core in ca Explain the procedu	•	v casting with ne	eat sketch?		2) 8)
210	Q3 ²¹⁰ a) b)	Explain different ste In a casting proces filling time by using	s liquid head is the bottom gating	equal to height g is t ₁ and the fil	of the mould cav lling time by using	ity. The (the top	5) ²¹⁰ 5)
		gating is t ₂ . Prove t time of a runner.	nat t ₁ = 2t ₂ , asst	ime that hegiec	ung the inclion an	ia miing	
210	Q4 a) 210	The DC power sour voltage and I=curre is the voltage?					5) 210
	b)	The permeability AFSsample by pas time taken to escap	sing2000cc of ai	r at a gauge pr	essure of 10g/cm		5)
210	Q5 a) 210	Differentiate forward Explain with figure brittle materials?			ferable for extrudir		5) 5) 210

210	210	210	210	210	210	210	210
210	Q6 a) b) 210	Explain about thermitwo The thickness of a plat rolling passes using ide change in width. If the piece is 0.10 , the minimum	iere is no				
	Q7	Explain about gas weld	(10))			
210	Q8 a) b) ₂₁₀ c)	Write short answer or Ultra sonic welding Wire drawing Closed die forging		(5 x 2)			
210	d)	Pattern allowances	210	210	210	210	
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210