210	210					2
Pogistr	ation No :					
Registi						
Total N	umber of Pages	s · 02			B.Tec	h
210	210 210	210	210	210	²¹ PCCE420	0
		GEO TECH BR Ti Ma	Back Examinatio NICAL ENGINE ANCH : CIVIL me : 3 Hours ax Marks : 70 CODE : C1107			
210		ion No.1 which igures in the rig	is compulsory a ht hand margin ts of a question	indicate marks		
Q1	Answer the foll	owing questions	:		(2 x 10))
a)			and bulk unit weigh	nt?		
b)		r? What are its ma	21			
₂₁₀ c)	write the relation	on between ₀ γd, γ	and w where no	otations ₂ have the	ir usual ₁₀	
d)	What do you me	ean by sensitivity a	and thixotropy of cla	ay?		
e)	Explain slaking	•				
f)		lications of flow ne				
g) h)		between OMC an ength parameters	d MDD? Draw the	graph for zero air	VOIDS?	
, i)		•	te the expression?			
210 j)	-210	210	for Boussinesq's e	210	210	
Q2 a)	How to determir	ne coefficient of co	nsolidation? Briefly	y explain the meth	ods. (5)	
b)	laboratory and t be 2×10 ⁻⁴ cm ² /s	he average value ec. If a structure	y stratum of 2 m of coefficient of co is built on this clay ettlement under lo	onsolidation was t y stratum, how loi	found to	
210	double drainage		210	210	210	
Q3 a)	What do you me	an by shear stren	gth of a soil? Expla	ain Mohr-coulomb	theory. (5)	
b)	A cylindrical spe length is tested compressive str	ecimen of saturate in an unconfine ength of clay, if th	ed clay, 4cm in dial d compression tes e specimen fails u een at failure is 1cn	meter and 9 cm ir ster. Find the und nder an axial loac	overall (5)	
Q4 ²¹⁰ a)		assumptions in t ass? Derive the La	wo dimensional f	flow of water the	rough a (5)	
b)	For a homogene constructed. Th were 25 and 4 r downstream en	ous earth dam 50 e number of equi espectively. The c d. Calculate the	m high and 2 m fi potential drops an lam has horizontal discharge per me material is 3×10 ⁻³	d flow channels of filter of 40 m lengeter length of the	obtained oth at its	
210	210					

210	210	210	210	210	210	210		210		
	 Q5 a) Explain HRB classification of soil. (5) b) A soil sample has a porosity of 40%. The specific gravity of solids is 2.70. (5) Calculate (a) void ratio (b) dry density (c) unit weight if the soil is 50% saturated and (d) unit weight if soil is completely saturated. 									
210		What do you mean b submerged soil mass.				ure in a	(5) (5)	210		
210	Q7 210	What is permeability? Explain falling head permeability test. The water table in a deposit of sand 8 m thick is at a depth of 3 m below the surface. Above water table, the sand is saturated with capillary water. The bulk density of sand is 19.62 kN/m ³ .Calculate the effective pressure at 1 m, 3 m, and 8 m below the surface. Hence plot the variation of total pressure, 10 neutral pressure and effective pressure over the depth of 8 m.						210		
	a) b)	Write short answer on Index properties of soil Shrinkage and swelling Triaxial test.	-				(5 x 2)			
210	,	Friction circle method.	210	210	210	210		210		
210	210	210	210	210	210	210		210		
210	210	210	210	210	210	210		210		
210	210	210	210	210	210	210		210		
210	210	210	210	210	210	210		210		
010	210	210	210	210	010	010		010		