Registration No :															
Total number of pages : 03						210					P	B.Tech. PCE4I104			
		4 ^t	h Semes								2017	'-18			
			F	UEL 8						OGY					
						NCH			1						
						ne : 3									
		Max Marks : 100 210 210 Q.CODE : C890 210													
210		21								.	210	D.	D	210	2
	А		Part-A v			-		-		-				1	
	Λοοιι		e figures itable no		_			_						2011	
4	435U	iiie Sui		er all								ei iie	3CE33	sai y.	
			Allow	rei aii	parts	o Or a	qu	CSIIC	ıı at	α μια	ice.				
			F	Part – /	A (An	swer	all t	he qı	estic	ons)					
Q1.		Answ	er the fol											(2 x 10)	
210	(a)	The u	ltimate an	alysis ²	of coa	l gives	s	210			210			210	2
		i.	Carbon,	hydrog	gen, a	nd asl	h								
		ii.	Volatile	matter	, mois	ture, a	ash,	and t	ixed	carbo	n				
		iii.	Carbon,	hydrog	gen, s	ulphuı	r, ar	nd niti	ogen						
		iv.	Volatile					_							
	(b)	Which	of the fol	lowing	coal l	nas th	e hi	ghest	calo	rific va	alue?				
		i.	Peat												
210			Lignite		10			210			210			210	2
		iii.	Bitumino												
	(-)	iv.	Anthraci			4!	1		1.1						
	(c)		ol of incon	•						ean					
		i. ii.	Decreas												
		II. İİİ.	Increasii Increasii	•				ess an							
		iv.	To decre	•											
210	(d)	0.4	rimary pur	0	4.0			roces	e ie		210			210	2
	(α)	i.	To incre	-											
		ii.	To reduc		-	-	-	-	•						
		iii.	To incre		-	•			our po	oint					
		iv.	To reduc		-				-						
	(e)	The g	aseous fu		-				-		fuel	gases	s is		
		i.	Water ga	as								_			
210		ii. ₂₁	Produce	er gas 2	10			210			210			210	
		iii.	Carbure	tted wa	ater ga	as									
		iv.	Semi-wa	ater ga	S										
	(f)		of the	followi	ng hy	/droca	arbo	ns a	e th	e mo	ost de	esirab	ole in		
		kerose													
		i. ::	Paraffins												
		ii.	Isoparaf												
		iii.	Naphthe	nes											

iv. ²¹⁰ Aromatics

	(g)	The monometallic catalyst used in the catalytic reforming of naphthas is		
210		i. Pt ii. 210 Ni 210 210 210 iii. Fe iv. V ₂ O ₅	210	210
	(h)	Producer gas is a mixture of i. $CO + H_2$ ii. $CH_4 + H_2$ iii. $CO + N_2$ iv. $CO + CH_4$		
210	(i)	Heavy water is used in nuclear reactors to i. Cool the reactor ii. Facilitate the release of neutrons iii. Control fission iv. Slow down the speed of neutrons	210	210
210	(j)	Which of the following is not a fission fuel? i. U - 233 ii. U - 235 iii. ₂₁₀ Pu - 239 iv. U - 238	210	210
Q2.		Answer the following questions :	(2 x 10)	
210	(a) (b) (c) (d) (e) (f)	What are the objectives of coal washing? Mention petrographic constituents of coal. What is power alcohol? What are the advantages of catalytic cracking over thermal cracking? Write the various reactions involved in reforming process. Mention different types of coal tar fuels and uses of CTF.	210	210
	(g) (h) (i) (j)	Write the composition and uses of natural gas. Mention the factors affecting composition of coke oven gas. In what way wind energy can be utilized? Write the properties of thorium.		
Q3.	(a) (b) (c)	Part – B (Answer any four questions) Write the characteristics of Bituminous and Anthracite coal. Discuss the steps to be taken to prevent the loss of coal. What is washability of coal? Explain briefly any coal cleaning process.	210 (4) (3) (8)	210
Q4.	(a) (b)	Discuss about the properties of coke. Briefly discuss about the byproducts of coke ovens for the manufacture of metallurgical coke.	(5) (10)	
Q5.	(a)	Describe in details about crude distillation system with neat flow diagram.	²¹⁰ (10)	210
	(b)	Explain Delayed coking process with a neat sketch.	(5)	
Q6.	(a)	Describe in detail, the Lurgi gasification process with a neat diagram of the gasifier. Also discuss in detail the process variables.	(10)	
	(b)	Give a brief description on Fisher-Tropsch process.	(5)	
210		210 210 210 210	210	210

		Discuss the function in brief about the fas	(15)				
10		The analysis of the 8%, and remainder flue gas was CO ₂ : Determine: i. The weight of ii. The percentage	²¹ (15)	210			
10	210 (b)	How geothermal end What is water gas? with the reactions in gas?	Explain its manu	ufacturing proces	s₂by a diagram	(5) 2° (10)	210
10	210	210	210	210	210	210	210
10	210	210	210	210	210	210	210
10	210	210	210	210	210	210	210
10	210	210	210	210	210	210	210
10	210	210	210	210	210	210	210