Tot	al Nu	umber of Pages : 02		B.Tech CS4I104			
		4 th Semester Regular / Back Examination 2017-18 FORMAL LANGUAGE & AUTOMATA THEORY					
	210	BRANCH : CSE	210				
		Time : 3 Hours					
		Max Marks : 100					
		Q.CODE : C1008					
		Answer Part-A which is compulsory and any four from Part-B.					
		The figures in the right hand margin indicate marks.					
		Answer all parts of a question at a place.					
	210	210 210 210 210	210				
~		Part-A(Answer all questions)		(0 40)			
Q1	a)	Answer the following questions :		(2 x 10)			
	a) b)	What do you mean by an alphabet and a string? Give the formal definition of Greibach Normal Form.					
	c)	Define Kleene closure of a language.					
	d)	If the number of states in an NFA is n, then what is the number of states in it	s				
	210	equivalent DFA? 210 210 210	210				
	e)	Construct an NFA for the regular expression (aUb)*aba.					
	f)	What do you mean by instantaneous description of a Turing Machine?					
	g)	Design a DFA that accepts odd number of ones.					
	h)	Differentiate between P and NP class of problems.					
	i)	Give example of a total and a partial function.					
	j)	What is meant by Halting Problem of a Turing Machine?					
Q2	210	Answer the following questions :	210	(2 x 10)			
	a)	Discuss the significance of a stack in PDA.		\ - <i>\</i>			
	b)	What do you mean by Pigeonhole Principle?					
	C)	Distinguish between a DPDA and NPDA.					
	d)	What is the time complexity of CYK algorithm?					
	e)	Define a Post Correspondence Problem (PCP).					
	f)	Give two examples of NP-Complete problems.	210				
	g)	What do you ² mean by €-closure (epsilon closure) of a state? ²¹⁰ Define a primitive recursive function.	210				
	h) i)	What is meant by leftmost and rightmost derivation? Give example.					
	j)	What is the difference between a recursive language and a recursivel	v				
	,,	enumerable language?	,				
		Part-B(Answer any four questions)					
Q3	a)	Design a PDA that recognizes the language $A = \{0^n 1^n n \ge 0\}$.	210	(5)			
	b)	Prove that the class of regular languages is closed under union operation.		(5) (5)			
	C)	Convert the following NFA to DFA.		(5)			
		$\longrightarrow \left(\begin{array}{c} q_1 \\ q_1 \end{array}\right) \xrightarrow{1} \left(\begin{array}{c} q_2 \\ q_2 \end{array}\right) \xrightarrow{0,1} \left(\begin{array}{c} q_3 \\ q_3 \end{array}\right) \xrightarrow{0,1} \left(\begin{array}{c} q_4 \\ q_4 \end{array}\right) \right)$					
			210				
	210		ZIU				

210		210	210	210	210	210	210		210
	Q4	a) b) c)	Design a minimized DFA for State and prove pumping lemma prove that the lange Differentiate between a de Turing Machine.	g_lemma_for_R uage L={0 ⁿ 1 ⁿ n	egular language >=0} is not regul	es. Using pu ar.		(8) (5) (2)	
210	Q5	a)	Give the formal definition of		ormal Form (CNF	-). Define am	biguity ²¹⁰	(5)	210
		b)	 in grammars with a suitable Design the DFA's for the la i) Starting with 1 and ii) Starting with 0 and even length. 	having	(5)				
210		C) 210	Define Ackermann's function and A (2,2). 210	on. Using the fu	nction, find out t	he values of A	A (2,1)	(5)	210
	Q6	a) b)	Design a Turing Machine to Convert the following co (CNF): $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$	-		• • • •	Form	(10) (5)	
210		210	B → B € 210	210	210	210	210		210
	Q7	a)	Design the NFA's acceptini) Not containing the sii) Containing the subs	substring 110. string 110.				(5)	
		b) c)	Design a PDA that recogni Show that the following fur i) f (x,y)= x*y			>=0 and i=j or	· i=k}.	(5) (5)	
210		210	ii) $f(x,y) = x^y$	210	210	210	210		210
	Q8	a)	Compute the Godel number i) 1,1,2,0 ii) 4,0,0,1		•			(5)	
		b)	Design a DFA over the alg exactly two a's.			at does not c	contain	(5)	
		C)	Explain the Chomsky's hie	rarchy with a su	itable diagram.			(5)	
210	Q9	a) b) c) d)	Write short answer on an Class NP-Complete Decidability Pumping Lemma for conte CYK algorithm	-	210 218	210	210 (5 x 3)	210
210		210	210	210	210	210	210		210
210		210	210	210	210	210	210		210