Reg	istra	ation No :									
Tota	al Nu	mber of Pag	ges : 02	210		210			210	21	• B.T
210		Answer Que	EN	 	RANC RANC Time : Max M Q.COD	HERM H : ME 3 Hou arks :)E : C6	ODYN/ CH rs 70 69	AMIC	S	om the ñ	PCME4
			e figures		ight ha	and m	argin i	ndica	te marl		
Q1		Answer the	following	questior	ıs :						(2 x
	a)	Why is an ise						atic pr	ocess?		
210	b)	What do you		210	•••	210			210	21	
	C)	What are He									
	d)	Saturated st temperature,					J/Kg.K.	what	are its	pressure	
	e)		•			· , , , ,					
	f)	What do you	understa	nd by stea	am rate	and he	at rate?	' What	are the	ir unit?	
	g)	What is a pa	ss-out turl	bine? Whe	en is it u	used?					
210	h)	What is an ₀ a	ir standaro	d efficienc	y?	210			210	21	
	i)	Prove that C	OP of Hea	at pump is	greate	r than (COP of	Refrig	erator by	y unity.	
	j)	What is a To	nne of Re	frigeratior	ו?						
Q2	a)	Show that Sg	_{gen} is not a	thermody	/namic	propert	у.				(5
210	b)	A system h A=0.042J/K ³ K is available the system is	.The syste e. What is	em is orig the ² maxir	inally a num an	t 200K, nount o	and a f work t	therma hat ca	al reserv n [°] be rec	voir at 100	
Q3	a)	Derive Maxw	/ell's equa	tions.							(5
210	b)	Two kg of ai its volume i surroundings maximum we take C _v =0.71 pressure in k kJ/kgK, and	ir at 500kl s doubled s which ork,(b)the l8kJ/kgK , kPa, V vol	Pa,80ºC e l and its s at 100 change i u = C _v T w ume in m	tempe 0kPa,5 ^c n availa /here C	rature C.For ability, a t _v is cor	become this pr and(c)th stant, a	es equ rocess ne irrer and pV	ual to ti , deterr versibilit ′=mRT \	hat of the mine(a)the y. For air, Where p is	(5 0
Q4	a)	Explain Bina	ry Vapour	Cycle.							(5
210	b)	In a reheat of are 150 bar a the moisture determine (a rate.	cycle, the and 550°0 at the c	initial ste crespection condenser	vely. If inlet i	the cor s 5%,a	idenser nd ass	press uming	ure is 0 ideal p	.1 bar and processes	0 0 (5

Q5 a)	For the same compression ratio and heat rejection, which cycle is most efficient: Otto, Diesel or Dual? Explain with p-v and t-s diagrams.	(5)	
b) 210		(5)	210
Q6 a)	Show that the optimum intermediate pressure of a two stage reciprocating compressor for minimum work is the geometric mean of the suction and discharge pressure.	(5)	210
b)	In an aircraft cooling system, air enters the compressor at 0.1MPa, 4 ^o C, and is compressed to 0.3MPa with an isentropic efficiency of 72%. After being cooled to 55 ^o C at constant pressure in a heat exchanger, the air then expands in a turbine to 0.1MPa with an isentropic efficiency of 78%. The low temperature air absorbs a cooling load of 3 tonnes of refrigeration at constant pressure before re-entering the compressor which is driven by the turbine. Assuming air to be an ideal gas, determine the COP of the refrigerator, the driving power required, and the air mass flow rate	(5)	210
27	A single stage reciprocating air compressor has a swept volume of 2000 cm^3 and runs at 800rpm. It operates on a pressure ratio of 8, with a clearance of 5% of the swept volume. NTD	(10)	
210	5% of the swept volume. Assume NTP room conditions and at inlet($p=101.3$ kPa,t=15°C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85.		210
	inlet(p=101.3kPa,t=15°C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the	(5 x 2)	210
	inlet(p=101.3kPa,t=15 ^o C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO :	(5 x 2)	210
₹8 a)	inlet(p=101.3kPa,t=15 ^o C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO :	(5 x 2)	210
Q8 a) b) 210	 inlet(p=101.3kPa,t=15^oC), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) ₂isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO : Clausius-Clapeyron equation. Brayton cycle vs Rankine cycle Volumetric efficiency 	(5 x 2)	
Q8 a) b)	 inlet(p=101.3kPa,t=15^oC), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) ₂isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO : Clausius-Clapeyron equation. Brayton cycle vs Rankine cycle 	(5 x 2)	
Q8 a) b) c) ²¹⁰ d)	inlet(p=101.3kPa,t=15 ^o C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO : Clausius-Clapeyron equation. Brayton cycle vs Rankine cycle Volumetric efficiency Reheat-Regenerative cycle	(5 x 2)	210
Q8 a) b) c)	 inlet(p=101.3kPa,t=15^oC), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) ₂isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO : Clausius-Clapeyron equation. Brayton cycle vs Rankine cycle Volumetric efficiency 	(5 x 2)	
Q8 a) b) c) ²¹⁰ d)	inlet(p=101.3kPa,t=15 ^o C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO : Clausius-Clapeyron equation. Brayton cycle vs Rankine cycle Volumetric efficiency Reheat-Regenerative cycle	(5 x 2)	210
Q8 a) b) c) ²¹⁰ d)	inlet(p=101.3kPa,t=15 ^o C), and polytropic compression and expansion with n=1.25. Calculate (a) indicated power, (b) volumetric efficiency, (c) mass flow rate, (d) isothermal efficiency, (e) the actual power needed to drive the compressor, if mechanical efficiency is 0.85. Write short answer on any TWO : Clausius-Clapeyron equation. Brayton cycle vs Rankine cycle Volumetric efficiency Reheat-Regenerative cycle	(5 x 2)	210

210 210 210