	Registration No:	010
10	210 210 210 210 210 210 210 210	210
	5	.TECH T4I101
	4 th Semester Regular / Back Examination 2017-18 ELECTROMAGNETICS ENGINEERING	
	210 210 BRANCH: ECE, ETC 210 210 Time: 3 Hours Max Marks: 100 Q Code: C681	210
	Answer Part-A which is compulsory and any four from Part-B.	
	The figures in the right hand margin indicate marks.	
10	(The vectors are denoted asbold block letters, eg. 'A'and unit vectors as Answer all parts of a question at a place.	a _Φ ') 210
	Q1 Answer the following guestions: <i>Dash fill up type</i> (2)	x 10)
	Q1Answer the following questions: Dash fill up type(2a)The intrinsic impedance of free space is	X 10)
	b) At every point in space, $\mathbf{a}_{\Phi} \cdot \mathbf{a}_{\Theta} = $	
	$c)$ Λ coavial line joins side to load side	0.10
		210
	 d) The Poynting vector is represented as e) theorem is also known as Gauss-Ostrogradsky 	
	theorem.	
	f) Transmission line and are used for the	
	propagation of guided waves. g) The phase velocity of an electromagnetic wave in free space is	
	g) The phase velocity of an electromagnetic wave in free space is	210
	h) At absolute zero some conductor exhibit infinite conductivity and are	
	known as	
	i) is the matching condition for transmission lines	
	with load. j) field varies periodically or sinusoidallywith time.	
	jj neid varies periodically of sindsoldallywith time.	
	 a) Differentiate between conduction and convection current. b) Illustrate with diagram the difference between positive and negative 	x 10) ²¹⁰
	divergence. c) Define TEM waves.	
	d) Show with how an E and H wave travels in air.	
	e) Draw a two-conductor transmission line showing the distributed	
	 parameters. f) What are the ranges of the coordinate variables in a cylindrical coordinate system? 	210

210	g) h) i) j)	Define SWR. Faraday's law and Lenz's law are same or different? Explain. Under what condition a line is said to be lossless? Write any four properties of the Curl.		210				
		<u>Part – B (Answer any four questions)</u>						
Q3	a)	Derive an expression for Electric Field Intensity of an infinite line	(10)					
210	b)	charge. Define Farady's law. Obtain the expression for it.	(5)	210				
Q4	a) b)	Find the solution of the one-dimensional wave equation. Explain the role of displacement current in obtaining the Maxwell's equations.	(10) (5)					
Q5	a)	Derive expressions for input impedance for lossless and lossy transmission line.	(10)					
210	b)	Calculate the distance between: (i) $(2,1,5)$ and $(6,-1,2)$, (ii) $(3,\pi/2,-1)$ and $(5,3\pi/2,5)$.	(5)	210				
Q6	a)	Write down the initial and final forms of the Maxwell's equation in in integral and differential forms.	(10)					
	b)	Explain how a wave behaves on oblique incidence at a surface.	(5)					
Q7 210	 Q7 a) State and prove Stoke's theorem. b) Why α and β are known as attenuation and phase constants? Write the generalized equation for them. Q8 a) In a charge-free region for which σ = 0, ε = ε₀ ε_r and μ = μ₀, Magnetic field intensity is given by, H= 5 cos (10¹¹t - 4y) a_zA/m. Find Electric Flux Density D. 							
Q8								
	b)	What are the key properties about the line parameters of a transmission line?	(5)					
210 Q9	(د	210 210 210 210 210 210 210 210 210	(10)	210				
45	a)	potential? What is its significance in deriving Maxwell's equation?	(10)					
	b)	What is a Uniform Ideal Transmission Line? Write its properties.	(5)					

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210 210

210