Registra	ation No :		
Total Nu 210	umber of Pages: 02 210 210 210 210 210 210 210 210 210 2	B.Tech. CEC4205	210
210	Q.CODE: C1178 Answer Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks. Answer all parts of a question at a place.		210
Q1 a)	Answer the following Questions: Why current density is considered as vector quantity, when current is a scalar quantity?	(2 x 10)	
b) 210 c) d)	Represent Laplace and Poisson equation with proper condition. Distinguish between oblique and normal incidence. Show by a sketch. Calculate the charge density at (1, $\pi/4$, 3) due to an electric flux density $D = z\rho\cos^2\phi a_z \ C/m^2$.		210
e) f) g) (h) (i) j)	Convert points P(1,3,5) from Cartesian to cylindrical co-ordinates. Define attenuation constant and phase constant of a medium. What is polarization vector? What is class A type di-electric? How do you differentiate TEM, TE and TM waves? Explain the term dipole and dipole moment. What is dominant mode? Explain.		210
Q2 a) b)	Derive wave equation for conducting medium. Write Maxwell's equation in phasor form.	(5) (5)	
Q3 ₂₁₀	Describe in details the various co-ordinates systems used in electromagnetics.	(10)	210
Q4 a) b)	Derive an expression for power flow unit area in uniform plane wave. What must be the width of a rectangular wave guide such that the energy of electromagnetic radiation whose free space wave length is 30cm travels down the guide at 95% of the speed of light?	(4) (6)	
Q5 a)	$\Delta X H = \frac{210}{J} + \frac{dD}{dt}$. Prove it by explaining equation of continuity and Ampere's	(5)	210
b)	law. What is current density and electric field intensity corresponding to a drift velocity of 5.3X10 ⁻⁴ m/s in aluminum? Conductivity of aluminum = 3.82X10 ⁻⁷ S/m and mobility=0.00014 m ² /V.S	(5)	
Q6:10 a) b)	Derive the expression for electric field intensity due to a infinite line charge. 210 A conducting circular loop of aradius 20cm lies in the Z=0 plane in a magnetic field B=10 cos 377t a_z mW/m 2 . Calculate the induced voltage in the loop?	(5) (5)	210

210	210	210	210	210	210	210	210
210	Q7 a) b)	Define these terms - Uniform medium and Derive general wa Helmholtz wave equ	d admittance ve equation fror	n Maxwell's wa			(5) (5) 210
	Q8 a) b) c) d)	Write Short Notes of Waves in Guided Mo	on any TWO : edium		2.0		5 x 2)
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210