210	210	210	210	210	210	
Registr	ation No :					
Total N	umber of Pages :	03 210	210	210	²¹⁰ B.T	ech.
	- th		<i>,_</i>		PET4	1102
		U U	r / Back Examin HINES & POWE			
			CH : ECE, ETC			
			ne: 3 Hours			
			Marks : 100			
210		210	CODE : C776 mpulsory and a	ny four from P	210 art-R	
			it hand margin i	•		
	-	•	of a question a			
		Part – Δ (Δ ns	wer all the quest	ions)		
Q1	Answer the follow				: (2 x	10)
a)	If the pole flux of a	dc motor approa	ches zero, its spee	ed will		
210	(a) approach zero	210	210	210	210	
	(b) approach infini	•	ı change in back e	mf		
			een zero and infini			
b)	The emf induced i				ating	
	innature. (True / F	,	-			
c)	Magnetization cur due to	ve for a DC genei	rator does not ordii	narily start from z	reo	
²¹⁰ d)	An electric motor i	n which both the	rotor and stator fie	lds rotate with sa	210 I me	
,	speed is called					
	., .,	universal (c) sy	•) charge		
e)	The power factor (a) Speed (b)		-			
f)	A 4-pole three-pha	()	,) prime mover		
•,			the stator is			
²¹⁰ g)	•		excited. (ac		,	
h)	The resultant flux				r is	
i)	If copper losses a		ux due to one phased current of 10 A in		hen the	
''	copper losses will					
j)	The direction of ro	-	•	e reversed by		
	(a) Reversing con		-			
210	(b) Reversing con (c) Using a reversi		arung winding	210	210	
	(d) Reversing sup	-				
Q2	Answer the follow	wing questions.	Short answer typ	e:	(2 x	10)
a)	What will happen				•	,
b)	Why is a DC serie				· · · -	
₂₁₀ C)	Draw the phasor of	210	210	210	210	
d)	What are the adva	intages of having	stationary armatur	re with rotating fig	ble	

210		210	210	210	210	210		210
	e)	What will happen if a open accidentally?	a shunt motor rur	nning at no-load l	has its shunt win	ding		
	f)	Why starting current of Induction motor is higher than the transformer?						
	g)	Between DC shunt and separately excited generators, whose terminal voltage is high? Justify.						
210	h)	Give any two application	210	210	210	210		210
	i)	The rotor resistance phase IM is 0.2 ohm external resistance maximum torque at	and 1 ohm resp per phase to be i starting?	ectively. What sh nserted in the rot	nould be the valu or circuit to give	e of		
	j)	A 50 Hz, 4 pole , 3 p Hz.Determine (i) the			current of freque	ency 2		
210		210	Part – B (Answe	r any four quest	tions) 210	210		210
Q3	a)	A 4 pole lap connect the following loads i at 250V. The genera 250 ohms. The arm	n parallel: (i) 5kW ator has a resista ature has 120 co	V Geyser at 250∨ ince of 0.2 ohm a nductors in the sl	(ii) 2.5kW Lighti and field resistand lots and runs at 2	ing load ce of 1000	(10)	
		rpm. Allowing 1V pe Flux per pole (ii) Arr		• •	-	• • •		
	b)	With neat diagram e	-				(5)	
210		210	210	210	210	210	. ,	210
Q4	a)	A 240 V DC shunt n Find the resistance may run at 950 rpm proportional to field armature resistance	required in series when taking an a current. The shui	with the shunt warmature current	vinding so that th of 28 A. Assume	e motor flux is	(10)	
210		Give two disadvanta can be used to cont diagram. ²¹⁰						210
	b)	Compare DC shunt ~Armature Current of Speed ~Torque Cha	characteristic, To	rque ~Armature	•		(5)	
Q5 210	a)	A 4 pole, 32 conduct of 200volts delivering field resistance of 20 pole in the machine terminal voltage and	g 12 amps to the 00ohms. It is driv If the machine h	e load has armatu en at 1000rpm. C has to be run as a	re resistance 2 o Calculate the flux a motor with the s	ohm and per 210 same	(10)	210
	b)	Explain briefly how a phase induction mot	· ·	duction motor is a	different from thr	ee	(5)	
Q6	a)	A 1-phase, 250/500		-	owing results:		(10)	
210		O.C. test: 250 V, 1 A S.C. test: 20 V, 12 A Calculate (i) magnetizing curre	A, 100 Ŵ	. on H.V. side	210 ding to core loss	210 at		210
		normalfrequency (ii) the equivalent ci	rcuit constants					
		(iii) Draw the equiva	lent circuit diagra					
		(iv) Voltage regulation	•		•		/ - `	
210	b)	What are different lo determine efficiency				aure to 210	(5)	210

210	210	210	210	210	210	210		210
210	Q7 a) 210	alternator is 0.5 ohr produces a current circuit. Calculate the delivering full load a Discuss different me	n between any two of 200A on short o e power angle and at 0.8 pf lagging. D ethods of starting	o terminals. A fi circuit and 1.1k I voltage regula Draw the corresp	eld current of 354 / (line to line) on tion when the ma ponding phasor d	A open Ichine is	(10) (5)	210
	Q8 a)	Explain the principle	Explain the principle of three phase induction motor. Explain the Torque slip					210
		characteristics and induction motor.						
	b)	Using phasor diagra synchronous motor		ression for pow	er and torque of		(5)	
210	Q9 ₁₀ a) b) c)	Speed control of DC	ng theory C series motor	210	210	210	(5 x 3)	210
	d)			ction motor				
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210
210	210	210	210	210	210	210		210

210 210 210 210 210 210 210 210