	-	Imber of Pages : 02 4 th Semester Back Examination 2017-18 DISCRETE MATHEMATICS BRANCH : CSE, IT, ITE Time : 3 Hours Max Marks : 70 Q.CODE : C584	B.Tech SCM121 ⁻
	Ans	wer Question No.1 which is compulsory and any five from the The figures in the right hand margin indicate marks. Answer all parts of a question at a place.	rest.
Q1	a)	Answer the following questions: Translate into a logical expression: "You can access the internet from campus only if you are a computer science major or you are not a freshman"	(2 x 10)
	b)	Construct the truth table for $(p \land q) \rightarrow (p \land q)$.	
	c) d)	Write the principal disjunctive normal form of $(p \land \neg q)$ Express the statement "Every student in this class has studied calculus" as a universal quantification.	
	e) f)	Prove that a tree with n vertices has $n-1$ edges. Give an example of graph having Hamiltonian circuit but not an	
	g)	Eulerian circuit. Prove that in an undirected graph numbers of odd degree vertices are even.	
	h) i) j)	Define Monoid and semigroup. In Boolean Algebra if $a + b = 1 \& a.b = 0$, show that the complement of every <i>a</i> element is unique. Simplify the Boolean expressions $XY + X'Z + YZ$	
Q 2	л)	Show that the propositions are $p \lor (q \land r) \& (p \lor q) \land (p \lor r)$	(5)
	b)	logically equivalent. Using rule of inference, determine whether the conclusion <i>C</i> is valid in the following premises : $H_1: P \Rightarrow (Q \Rightarrow R)$ $H_2: P \land Q$ C: R	(5)
Q3	a)	Prove that for any integer $n > 1 \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$.	(5)
	b)	Solve the recurrence relation $a_n = 4(a_{n-1} - a_{n-2})$ with initial condition $a_0 = a_1 = 1$.	(5)
Q4		Let $R = \{(1,2), (2,3), (3,1)\}$ and $A = \{1,2,3\}$, find the reflexive, symmetric and transitive closure of <i>R</i> , using (i) Composition of relation <i>R</i> . (ii) Composition of matrix relation <i>R</i>	(10)

210 Q5	a)	Let G be a connected planar simple graph with E is number of	210 (5)	210
		edges & V is the number of vertices & R is a number of regions then	(-)	
	b)	V - E + R = 2. State & prove five-color theorem for groups.	(5)	
Q6	a)	Prove that the number of edges in a bipartite graph with n vertices is	(5)	
		at most $\left(\frac{n^2}{2}\right)$.		210
	b)	Let (L, \leq) be a lattice. Thenfor $a, b, c, d \in L$.	(5)	
		(i) $a \le b \Rightarrow a \lor c \le b \lor c$.		
		(ii) $a \le b \Longrightarrow a \land c \le b \land c$.		
Q7	a)	Show that every finite lattice has a least upper bound & a greatest lower bound.	(5)	210
	b)	Show that if (a,b) are arbitrary elements of a group G, then	(5)	
		$(ab)^2 = a^2b^2$ if G is abelian.		
Q8		Answer any TWO :	(5 x 2)	
	a)	Prim's Algorithm		
	b)	Kruskal's Algorithm Fulerian and Hamiltonian Graph		210
	C)	Eulerian and Hamiltonian Graph		210

d) Principal Ideal Domain& Maximal Ideal

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210