							ation No :	jistra	Reg
]								
B.Tech. PCI4I103		010				ages :	Imber of P		
			ack Examina				210		210
		URES	ETE STRUC ⁻ I : CIVIL		ESIGN (D			
			Hours						
			ks:100 : C1006						
	n Part-B.	four from	sory and any		A which	er Part	Answ		
		licate mark	nd margin in	e right h	ires in²ťh	he figu			210
			to examinat question at						
		•	•	•		, .			
(2 x 10)	/pe :		all the questio ple type or da			e follow	Answer th		Q1
-	or of the har if	he diameter	be ned four times				The pH val	a) b)	
					nd, is	f the be	the angle o	5)	210
	·	e T-beam if	he flange of th) 90 ⁰ sidered a:	,		, ,	C)	
			s carrying unif	orted bea	nple supp	RCC sir	Design of	d)	
	1	uarter span					based on tl i) supports		
	olumn is	C circular col	equired for a R					e) f)	
	ı full area ²¹⁰ of	g stress on	nissible bearing		0.1.0	tate me	For limit s		210
			ally not exceed	nould gen	spacing s		concrete is In water tai	h)	
	ı per unit run	of height h p	retaining wall	al face of	the vertic	sure on	Total press	i)	
			per unit volum rt retaining wa					j)	
(2 x 10)		:	t answer type	ions: She	ina aues	e follow	Answer th		Q2
(210	210	210		of collapse	it state o	Explain lim	aj	210
			d in a beam?	t is provid			Define dev When side	b) c)	
	orking stress	gn over wor	nethod of des	imit state	ntage of		What is th method dea	d)	
			wo way slab.			e betwe	Differentiat	e)	
			SIAD.				Show torsic Write suital	f) g)	
	210	210	210 its component	vided.	alls are pro	ining wa	Where reta	h)	210
		J.	•				Write force	i) j)	
		ons)	ny four questi	(Answer	<u>Part – B</u>				
		0 mm effecti	width and 55	of 300 m	n section			a)	Q3
			r bars. Design mate shear fo	ars. The u	ent up ba	al and b	both vertic		
(5)	oment of 180	210 ultimate mon	e Fe:415 Ibjected to an				concrete of	b)	210
(•)									

 mm is reinforced with 4 -20 # bars in tension face and 3-16 # in compression face. If the effective span is 6m, what is the maximum superimposed load that the beam can carry? Use M 25 grade of concrete and Fe415 grade steel. Cover to reinforcement both in tension and compression is 25 mm. b) A RC T beam has 120 mm thick slab, flange width 1500 mm, rib width 240 mm in doverall depth 440 mm. The section is reinforced with 4 nos 25 mm HYSD bars. Effective cover to reinforcement is 40 mm. calculate moment of resistance. Use M20 and Fe415. q5 a) Design a simple supported RC slab for a room measuring 2.8m x 8.0 m size. It is subjected to live load of 3 kN/m² and floor finishes of 0.75 kN/m². Use M20 & .Fe415. b) Design a two way slab for a room 3.6x4.6m clear in size if the superimposed load is 5KN/m². Use M25 grade of concrete and Fe415 grade steel. The edges are simple supported and corners are not held down. q6 a) Design a two flight staircase with steps o waist slab for floor to floor height of 3.3m width of flight 1.25m superimposed load of 3kN/m² for following support condition: simply supported at the ending of the landing slab with span in the direction of flight. Use M25 & .Fe415 b) A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm& My=30 kNm about the major & minor axes. Effective length about x-axis l_{ex} = 5.25m & Effective length about y-axis l_{ey} = 4m. Unsupported length of column. q7 a) Design a short circular column of subjected to a factored load of 2400 kN. Use M30 concrete and Fe415. g8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered (with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. g9 a) A cantilever retaining wall has is to be constructed to retain earth of 4.2 m above (ground level. The top of the earth is to be leveled. The tensity of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stabi										
 b) A RC T beam has 120 mm thick slab, flange width 1500 mm, rib width 240 mm and overall depth 440 mm. The section is reinforced with 4 nos 25 mm HYSD bars. Effective cover to reinforcement is 40 mm. calculate moment of resistance. Use M20 and Fe415. Q5 a) Design a simple supported RC slab for a room measuring 2.8m x 8.0 m size. It is subjected to live load of 3 kN/m² and floor finishes of 0.75 kN/m². Use M20 & &Fe415. b) Design a two way slab for a room 3.6x4.6m clear in size if the superimposed load is 5KN/m². Use M 25 grade of concrete and Fe415 grade steel. The edges are simple supported and corners are not held down. Q6 a) Design a two flight staircase with steps o waist slab for floor to floor height of 3.3m width of flight 1.25m superimposed load of 3kN/m² for following support condition: simply supported at the ending of the landing slab with span in the direction of flight. Use M25 & Fe415 b) A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm& My=30 kNm about the major & minor axes. Effective length about x-axis l_{ex} = 5.25m & Effective length about y-axis l_{ey} = 4m. Unsupported length of column about both axes =4.75m. Calculate the final design force and moments for the column. Q7 a) Design a short circular column of subjected to a factored load of 2400 kN. Use M30 concrete and Fe 415 steel. b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN.⁴Design the dimensions of rectangular isolated footing based on bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 20 zo zo	Q4	a)	mm is reinforced with 4 -20 $\#$ bars in tension face and 3-16 $\#$ in compression face. If the effective span is 6m, what is the maximum superimposed load that the beam can carry? Use M 25 grade of concrete and Fe415 grade steel. Cover	(10)						
 is subjected to live load of 3 kN/m² and floor finishes of 0.75 kN/m². Use M20 & Fe415. b) Design a two way slab for a room 3.6x4.6m clear in size if the superimposed to load is 5KN/m². Use M 25 grade of concrete and Fe415 grade steel. The edges are simple supported and corners are not held down. Q6 a) Design a two flight staircase with steps o waist slab for floor to floor height of (3.3m width of flight 1.25m superimposed load of 3kN/m² for following support condition: simply supported at the ending of the landing slab with span in the direction of flight. Use M25 & Fe415 b) A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm& My=30 kNm about the major & minor axes. Effective length about x-axis l_{ex} = 5.25m & Effective length about y-axis l_{ey} = 4m. Unsupported length of column about both axes =4.75m. Calculate the final design force and moments for the column. Q7 a) Design a short circular column of subjected to a factored load of 2400 kN. Use M30 concrete and Fe 415 steel. b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN. Design the dimensions of rectangular isolated footing based on bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. Q9 a) A cantilever retaining wall has is to be constructed to retain earth of 4.2 m above (ground level. The top of the earth is to be leveled. The density of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stability of the retaining wall and design the stem. Use M 20 concrete and Fe 415 steel. b) Show reinforcement detailing of a section through counter fort	210	b)	A RC T beam has 120 mm thick slab, flange width 1500 mm, rib width 240 mm and overall depth 440 mm. The section is reinforced with 4 nos 25 mm HYSD bars. Effective cover to reinforcement is 40 mm. calculate moment of resistance.	(5)						
 load is 5KN/m². Use M 25 grade of concrete and Fe415 grade steel. The edges are simple supported and corners are not held down. Q6 a) Design a two flight staircase with steps o waist slab for floor to floor height of (3.3m width of flight 1.25m superimposed load of 3kN/m² for following support condition: simply supported at the ending of the landing slab with span in the direction of flight. Use M25 & Fe415 b) A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm8 My=30 kNm about the major & minor axes. Effective length about x-axis l_{ex} = 5.25m & Effective length about y-axis l_{ey} = 4m. Unsupported length of column about both axes =4.75m. Calculate the final design force and moments for the column. Q7 a) Design a short circular column of subjected to a factored load of 2400 kN. Use (M30 concrete and Fe 415 steel. b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN. 'Design the dimensions of rectangular isolated 'footing based on bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 210 210 210 210 210 210 210 210 210 210	Q5	a)	is subjected to live load of 3 kN/m ² and floor finishes of 0.75 kN/m ² . Use M20	(10)						
 3.3m width of flight 1.25m superimposed load of 3kN/m²for following support condition: simply supported at the ending of the landing slab with span in the direction of flight. Use M25 & Fe415 b) A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm& My=30 kNm about the major & minor axes. Effective length about x-axis l_{ex} = 5.25m & Effective length about y-axis l_{ey} = 4m. Unsupported length of column about both axes =4.75m. Calculate the final design force and moments for the column. Q7 a) Design a short circular column of subjected to a factored load of 2400 kN. Use (M30 concrete and Fe 415 steel. b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN: Design the dimensions of rectangular isolated footing based on bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 210 210 210 210 210 210 210 210 210 210		b)	Design a two way slab for a room 3.6x4.6m clear in size if the superimposed load is 5KN/m ² . Use M 25 grade of concrete and Fe415 grade steel. The edges	(5)						
 b) A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm& My=30 kNm about the major & minor axes. Effective length about x-axis l_{ex} = 5.25m &Effective length about y-axis l_{ey} = 4m. Unsupported length of column about both axes =4.75m. Calculate the final design force and moments for the column. Q7 a) Design a short circular column of subjected to a factored load of 2400 kN. Use (M30 concrete and Fe 415 steel. b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN²⁺ Design the dimensions of rectangular isolated footing based on bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 210 210 210 210 210 210 210 210 210 210	Q6	a)	3.3m width of flight 1.25m superimposed load of $3kN/m^2$ for following support condition: simply supported at the ending of the landing slab with span in the	(10)						
 M30 concrete and Fe 415 steel. b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN²⁰Design the dimensions of rectangular isolated ⁶footing based ²ion bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 210 210 210 210 210 210 210 Q9 a) A cantilever retaining wall has is to be constructed to retain earth of 4.2 m above ground level. The top of the earth is to be leveled. The density of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stability of the retaining wall and design the stem. Use M 20 concrete and Fe 415 steel. b) Show reinforcement detailing of a section through counter fort of a retaining wall. 		b)	A short RCC column carries an axial load of 1170 kN accompanied by moments Mx=120 kNm& My=30 kNm about the major & minor axes. Effective length about x-axis $l_{ex} = 5.25m$ &Effective length about y-axis $l_{ey} = 4m$. Unsupported length of column about both axes =4.75m. Calculate the final design force and	(5)						
 b) A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN.¹⁰Design the dimensions of rectangular isolated footing based for bending and one way shear criteria. Safe bearing capacity of the soil is 150 kN/m². Use M 25 and Fe 415. Q8 a) Design a circular tank having diameter 6 m and height 3m. the tank is covered with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ Q9 a) A cantilever retaining wall has is to be constructed to retain earth of 4.2 m above ground level. The top of the earth is to be leveled. The density of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stability of the retaining wall and design the stem. Use M 20 concrete and Fe 415 steel. b) Show reinforcement detailing of a section through counter fort of a retaining wall. 	Q7	a)		(10)						
 with domed roof. Use M25 and Fe415. Design top dome, ring beam and cylindrical wall. b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 210 		b)	A rectangular RC column, 400 mm x 600 mm carries a factored axial load of 3000 kN ²¹⁰ Design the dimensions of rectangular isolated ¹⁰ footing based ²¹ on bending and one way shear criteria. Safe bearing capacity of the soil is 150							
 b) Calculate dimension of an Intze type tank to store 600000 liters of water and show it in drawing. 210 210 210 210 210 210 Q9 a) A cantilever retaining wall has is to be constructed to retain earth of 4.2 m above ground level. The top of the earth is to be leveled. The density of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stability of the retaining wall and design the stem. Use M 20 concrete and Fe 415 steel. b) Show reinforcement detailing of a section through counter fort of a retaining wall. 	Q8	a)	with domed roof. Use M25 and Fe415. Design top dome, ring beam and	(10)						
 ground level. The top of the earth is to be leveled. The density of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stability of the retaining wall and design the stem. Use M 20 concrete and Fe 415 steel. b) Show reinforcement detailing of a section through counter fort of a retaining wall. 		b)	Calculate dimension of an Intze type tank to store 600000 liters of water and	(5)						
wall.	Q9	a)	ground level. The top of the earth is to be leveled. The density of earth is 18 kN/m3 and coefficient of friction is 0.6. Check the stability of the retaining wall and design the stem. Use M 20 concrete and Fe 415 steel.	(10)						
210 210 210 210 210 210		b)		(5)						
	210									
210 210 210 210 210 210	210		210 210 210 210 210							

0.1.5