Regis	stration No :	
Total N	umber of Pages : 02 ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ ²¹⁰ B.Tech.	21
	PEI4I102	
	4 th Semester Regular / Back Examination 2017-18 CONTROL SYSTEM ENGINEERING	
	BRANCH : AEIE, EIE, IEE	
	Time: 3 Hours	
	Max Marks : 100	
210	210 210 Q.CODE : C7173 210 210 210	21
	Answer Part-A which is compulsory and any four from Part-B.	
	The figures in the right hand margin indicate marks. Answer all parts of a question at a place.	
	Answer an parts of a question at a place.	
~	Part – A (Answer all the questions)	
Q1 a)	Answer the following questions: <i>multiple type or dash fill up type:</i> (2 x 10) is an electromagnetic transducer that produces an output voltage	
210	depending upon the angular displacement. 210 210 210 210	21
b)	motor rotates in steps.	
c) d)	block represents the transfer function $G(s)$ of a system. Cascade blocks with transfer functions $G_1(s)$ and $G_2(s)$ can be replaced by a	
u)	single block with a transfer function equal to the of transfer functions of	
	individual blocks.	
e)	To shift the takeoff point to the right of the block G(s), the	
21 f)	takeoff branch by G(s). The closed system has higher than open loop control system; this 210	
210	implies increased speed of response.	2
g)	The necessary condition of stability are of characteristic equation	
h)	must be real, non-zero and have the same sign. If the roots of the have negative real parts then the response is	
,		
i)	Routh Hurwitz criterion gives number of roots in the half of the s-	
21	plane. If the polar plot of a transfer function passes through the critical point	
2107	(-1,0). Gain margin is	2
Q 2	Answer the following questions: <i>Short answer type:</i> (2 x 10)	
a)	Define transfer function of a system.	
b)		
c) d)	What are the different types of stepper motors? Define: settling time and overshoot.	
e)	What are the standard test signals of a control system?	
f)	What are the benefits of feedback?	4
g) h)	What is meant by steady state error? State the necessary conditions for the stability.	
	For a unity feedback control system with G (s) = $K/s(s+4)$, what is the value of	
i)	K for which the damping ratio is 0.5.	
i)		
i) j)	State Cauchy's theorem.	
,	State Cauchy's theorem. 210 210 210 210 210	2

Q3	a)	Part – B (Answer any four questions) What are the types of Control systems? Write the advantages and disadvantages of all the control systems.	(10)	
	b)	Write Mason's gain formula.	(5)	210
Q4	a) b)	Explain the procedure to draw the signal flow graph from block diagram. Explain the advantages and disadvantages of block diagram reduction process over signal flow graph.	(10) (5)	210
Q5	a) b)	What are the time domain specifications? Explain in detail. Sketch a typical step response of a 2 nd order under-damped system.	(10) (5)	
Q6	₂a)	Using Routh Hurwitz criterion, determine the stability of a system representing 210 the characteristic equation, $s^5 + s^4 + 2s_3 + 3s + 5 = 0$	(10)	210
	b)	The open loop transfer function of a unity feedback system is given by $G(s) = 1/[s(1+s)^2]$. Sketch the polar plot and determine the gain and phase margin.	(5)	
Q7	a)	A unity feedback control system has an open loop transfer function $G(s) = k / [s (s^2 + 4s + 13)]$. Sketch the root locus.	(10)	
	b)	What are the advantages of Bode plot?	(5)	
	210 a)	Sketch the Bode plot for the following transfer function and determine the system gain k for the gain cross over frequency to be 5 rad/sec. $G(s) = ks^2 / [(1+0.2s)(1+0.02s)]$	(10)	210
	b)	Describe the Nyquist contour and its various segments.	(5)	
Q9	a)	Draw the state model of a linear single-input-single-output system and obtain its corresponding equations.	(10)	
	2 b)	State the properties of a state transition matrix $_{10}$ 210 210	(5)	210

210 210 210 210 210 210 210 210 210