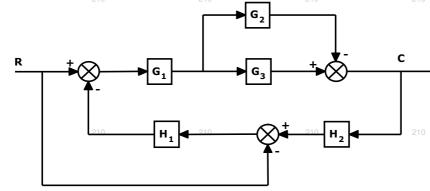
| 210 | 210                                                                               | 210                                                                                                                                         | 210                                                                                                                             | 210                                                                                 | 210                                                               | 210           | 210      |
|-----|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|----------|
|     | Regi                                                                              | stration No :                                                                                                                               |                                                                                                                                 |                                                                                     |                                                                   |               |          |
|     | Total Nu                                                                          | umber of Pages : 04                                                                                                                         | 4                                                                                                                               |                                                                                     |                                                                   |               | B.Tech   |
| 10  | 210                                                                               | <sup>210</sup> 4 <sup>th</sup> S                                                                                                            | Tim<br>Max                                                                                                                      |                                                                                     |                                                                   | 210           | PEL4I102 |
| 10  | 210                                                                               | ₂The fi                                                                                                                                     | rt-A which is con<br>gures in the right<br>Answer all parts                                                                     | npulsory and<br>t hand margir                                                       | n indicate marks                                                  |               | 210      |
|     | <u>Part – A (Answer all the questions)</u><br>Q1 Answer the following questions : |                                                                                                                                             |                                                                                                                                 |                                                                                     |                                                                   |               |          |
|     | a)                                                                                | The transfer function                                                                                                                       |                                                                                                                                 | igram shown in                                                                      | figure is                                                         | ·             | (2 x 10) |
| 10  | 210                                                                               | R(s)G                                                                                                                                       | X(s)                                                                                                                            | ► G <sub>2</sub> <sup>2</sup> + (                                                   | C(s)                                                              | 210           | 210      |
| 210 | <b>b)</b><br>210                                                                  | the impulse r                                                                                                                               |                                                                                                                                 | right option)<br>ned by multiply                                                    | ring the time-doma                                                |               | 210      |
|     | c)                                                                                | <ul> <li>c) It is difficult to</li> <li>d) None of the a</li> <li>If open-loop poles a</li> <li>option)</li> <li>a) The system i</li> </ul> | o give time-domain<br>above                                                                                                     | input<br>the right-hand<br>lues of the gain                                         | plane, then (Choc                                                 | , c           |          |
| 10  | 210<br>d)                                                                         | <ul> <li>d) The system i</li> <li>Controllability of a sy</li> <li>a) The input is r</li> <li>b) The input is r</li> </ul>                  | elated to all the state<br>elated to most dom<br>elated to the least o                                                          | alues of gain de<br>ose the right opt<br>te-variables<br>inant state-varia          | epending on the inp<br>tion)<br>ables                             | ut excitation | 210      |
| 210 | <b>e)</b><br>210                                                                  | The open loop tr                                                                                                                            | ansfer function of $G(s) = \frac{1}{s(0)}$                                                                                      | $\frac{20(0.1s^{0}+1)}{2s+1)(0.02s+1)}$                                             | edback system is $\frac{210}{10}$                                 | s given by    | 210      |
| :10 | <b>f)</b><br>210                                                                  | small to very<br>b) Magnitude is<br>the y-axis<br>c) Both a) and b<br>d) The character                                                      | d phase plots are plot<br>nd phase are plot<br>large frequencies, f<br>expressed in decib<br>210<br>p)<br>ristics features of n | plotted on a set<br>ted on a frequ<br>thus, requiring a<br>pels, and thus, a<br>210 | lency scale that c<br>a log scale<br>a linear scale is sur<br>210 | ficient along | 210      |
|     |                                                                                   | semi-log pap                                                                                                                                |                                                                                                                                 |                                                                                     |                                                                   |               |          |

210

- 210
- g) If there are n number of poles and m number of zeroes of a transfer function, number of branches of the root locus will move to ∞ and along which angles.
- h) A network comprises of 2 inductors, 1 capacitors and 1 resistors. The current across different inductors are linearly independent and voltage across different capacitors is
   <sup>210</sup> Inearly independent as well. <sup>210</sup> no. of states are necessary to describe the network in state variable form.
- i) The biggest disadvantage of state-space methods is (Choose the right option)
  - a) They consume too much of computer time
  - b) Physical insight is lost after modeling a system in state space
  - c) The analysis is done in time domain
  - d) They cannot be used to solve a general class of problems in control
- j) The damped natural frequency for a closed loop system represented by differential
- 210 equation is 210 . 210

$$\frac{\overline{d^2 c(t)}}{dt^2} + 8\frac{dc(t)}{dt} = 64[r(t) - c(t)]$$


Where c(t) is the displacement of the output shaft and r(t) is the displacement of input shaft.

## Q2 Answer the following questions: Short answer type:

- a) Define transfer function. What are the assumptions made for the initial conditions?
- **b**) Write down Mason's gain formula for determining the transfer function of a signal flow graph, explaining the meaning of each term.
- c) What do you understand by 'Sensitivity to parameter variations'? Is it more or less in closed loop systems in comparison to open loop systems?
- d) Why is a system with poles on the RHS of the s-plane an unstable system?
- e) How can you ascertain the status/ type of stability of a system from its root locus?
- f) What is principle of argument?
- **g)** What effect does the increase in gain have on the transient and steady state behavior of a system?<sub>210</sub> 210 210 210 210 210
- h) If you add a pole at the origin to a system, how its polar plot be modified with respect to the one before addition of the pole?
- i) Name the standard test signals and draw the input output relationships for each.
- j) Write the transfer function for a PI and PID controller.

## Part – B (Answer any four questions)

**Q3 a)** Evaluate the transfer function(C/R) by using block reduction techniques for a system (10) whose block diagram representation as shown in Fig.

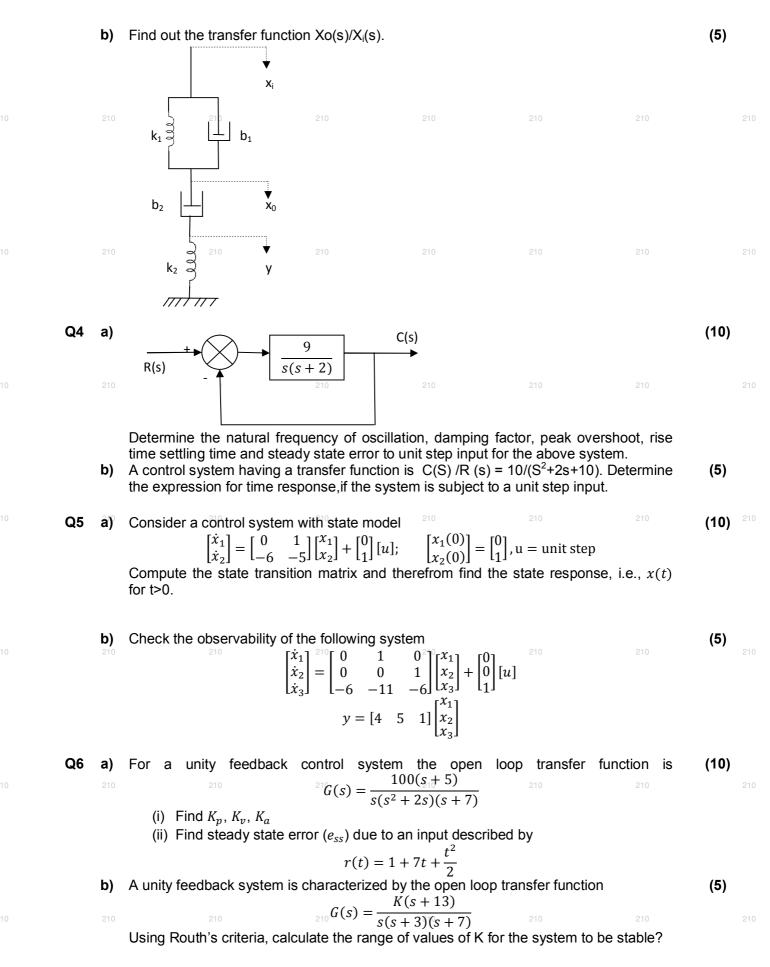


Determine the transfer function(C/R) of the system shown in Fig, using Mason's Gain Formula.

| 210 | 210 | 210 | 210 | 210 | 210 |
|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |
|     |     |     |     |     |     |
|     |     |     |     |     |     |
|     |     |     |     |     |     |
|     |     |     |     |     |     |

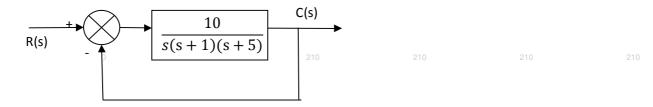


(2 x 10)


210

210

21


210

| 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |



| 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |

**Q7 a)** Draw the Bode magnitude and phase plot of the following system and determine gain (10) margin, phase margin, and absolute stability.



- b) Define the terms Gain Margin, Phase Margin, Gain crossover frequency and Phase (5) crossover frequency. Why is Gain Margin determined at Phase crossover frequency and Phase Margin at Gain crossover frequency?
- **Q8 a)** Plot the root loci for the unity feedback system with  $G(s) = \frac{K}{(s+2)(s^2+2s+4)}$ (i) Determine the centroid and the breakaway points.
  (ii) Determine the centroid and the breakaway points.
  - (ii) Find the frequency at which the root locus branches cross the imaginary axis.b) What do you mean by State Transition Matrix? Discuss one method of determining it. (5)

(5)

- **Q9 a)** An open-loop transfer function of a unity feedback system is given by (10) <sup>210</sup>  $G(s)H(s) = \frac{210}{s(s+2)(s+4)}$ <sup>210</sup>
  <sup>2</sup>
  - (ii) Determine the gain margin and the phase margin.
  - b) Write short notes on PID Controller.

 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 <th