210	210	210	210	210	210	
Regi	stration No :					
	nber of pages : 02	210	210	210	B.¹ ₽CCH	Fech.
	4 th CHE	Semester Back MICAL PROCES BRANG Time Max M Q.CO	Examination 2 SS AND CALCU CH : CHEM : 3 Hours Marks : 70 DE : C665	2017-18 JLATION		4200
210	Assume suitable n e of Humidity Char	es in the right-h notations and a	hand margin ind ny missing data Answer all parts	dicate marks. a wherever ne s of a questio	ecessary.	
Q1.	Answer the follow	• •	21 M/bat is the m	ala naraant of N		x 10)
(a) ²¹⁰ (b)	6 kg of NaCl is mixe mixture? 210 A plastic body float specific gravity of th	s in water with th	210	210	210	
(c)	A wet paper pulp of dryer, it is found the original pulp is	contains 75% wat atthe pulp is now kg.	containing 30%	water. The we	ight of the	
(d)	The weight ratio of to be 5.25. Whatis t			hydrocarbon fu	el is found	
23 (e)	i. It can't be co ii. It can't be co iii. It can't be co iii. It can't be co	e its critical temper ondensed by cooli ondensed by com ondensed by cooli uefied either by co	ng at constant pro pressing isotherm ng or by compres	essure ally ssion	210	
(f)	ii. The solute o	obeys Henry's lav beys Henry's law				
210	iv. The solute o	and solute obey H beys Raoult's law	210	210	210	
(g)	Assuming that CO ₂ kg/m ³ at 540 K and 2	202 kPa.		ate the density	of CO ₂ in	
(h) (i)	Mention the applica The absolute tempe If $C_P = 1.4 C_V$, find t	erature of an idea	l gas gets double			
(j)	Explain the adiabati	ic flame temperati	ure.			
Q2. ²¹⁰ (a) (b) (c)	How many molecule How many moles of Sulphur trioxide ga according tothe follo $4FeS_2 + 15O_2 \rightarrow 2Fe$ How many kilogram How many kilogram	f sodium sulphate as is obtained b owing reaction: $e_2O_3 + 8SO_3$ ns of pyrites are b	will contain 100 k by the combustic purned to obtain	n of iron pyrit	urtrioxide?	(2) (2) (6)

Q3.	(a)		(5)
	210	Thedensities (kg/m ³) of water, alcohol, and the solution may be taken to be 998, 798, and 895 respectively at 293 K. Calculate the volume percent of ethanol ₂ in the solution at 293 K, the molarity, and the molality.	
	(b)	A company has a contract to buy NaCl of 98 % purity for Rs. 300/- per 1000 kg	(5)
		salt delivered. Its last shipment of 1000 kg was only of 90% purity. How much they should pay for the shipment?	
Q4.		Air is to be dehumidified by condensing the water vapour present in it by cooling atconstant pressure. 100 m ³ of air at 100 kPa and 300 K contains water vapour	(10)
	210	which exerts a partial pressure of 4 kPa. Keeping the pressure constant, this air	
		is cooled to 275 K and the condensed wateris removed. The partial pressure of water in the air after cooling is found to be 1.8 kPa. Calculate the	
		 i. Volume of air after dehumidification in m³ and ii. Mass of water removed in kg. 	
Q5.		An air-water vapour sample at 101.3 kPa has a dry-bulb temperature of 328 K	(10)
	210	and is10% saturated with water vapour. Using the psychrometric chart determine the following:	
		 i. the absolute humidity, kg water vapour per kg dry air ii. the partial pressure of water vapour 	
		iii. the absolute saturation humidity at 328 Kiv. the vapour pressure of water at 328 K	
		 v. the percent relative saturation vi. the dew point of the system 	
Q6. 2	(a)	The heat of combustion of methane, carbon, and hydrogen are -890.4,-	(5)
	210	393.51, and – 285.84 kJ/mol respectively. Calculate the heat of formation of methane.	. ,
	(b)	Calculate the standard heat of formation of acetylene (C_2H_2). Data:	(5)
		Standardheat of combustion of acetylene is - 1299.61 kJ, Standard heat of combustion of carbon is - 393.51kJ, and	
		Standard heat of formation of liquid water is - 285.84 kJ.	
Q7.	210	Hydrogen ²¹⁰ gas is burned ¹⁰ in an adiabatic reactor with ¹⁰ two times the theoreticalquantity of air, both air and hydrogen being at 298 K initially. What will	(10)
		be the temperature of thereaction products? The standard heat of formation of	
		gaseous water is – 241.826 kJ/mol. The heatcapacities (kJ/kmol K) of the gases are given below:	
		Water vapour: C _P = 30.475 + 9.652*10 ⁻³ T + 1.189*10 ⁻⁶ T ² Nitrogen: C _P = 27.034 + 5.815*10 ⁻³ T – 0.2889*10 ⁻⁶ T ²	
	210	Oxygen: $C_P = 25.611 + 13.260*10^{-3}T - 4.2077*10^{-6}T^2$ 210 210 210 210 210 210 210 210 210 210	
Q8.	(a)	Write short notes on any TWO : Vapour pressure plots	(5 x 2)
	(b)	Recycle and purging operations	
	(c) (d)	Heat of solution and heat of mixing Effect of temperature on standard heat of reaction	