	r		 1	 		i i
Registration No:						J
Registi attoli 190.						J I
						1

Total Number of Pages : 02

B.TECH 2ND SEMESTER REGULAR EXAMINATIONS, MAY 2018 **ENGINEERING MATHEMATICS-II** Subject Code:BBSBS2010 **Time: 3 Hours** Max Marks: 100

- CO1 To Solve Ordinary differential and integral equation by using Laplace transform.
- CO2 To execute the technique of Fourier Integral and transform for learning in advanced Engineering Mathematics.
- To relate gradient, curl and divergence and its application in fluid dynamic. CO3
- To evaluate multiple integrals by using Green's, Stokes' and divergence theorem to give physical CO4 interpretation of the curl and divergence of a vector field.

 $\partial^2 f$

PART-A

 $\frac{1}{\lambda^2 f}$

(10X1 = 10 MARKS)

Answer All Questions. a) The value of div(gradf)= _____

d)

f)

[CO2]

$$i) \frac{\partial f}{\partial x^{2}} \quad ii) \frac{\partial f}{\partial y^{2}} \quad iii) \frac{\partial f}{\partial z^{2}} \quad iv) \nabla^{2} f$$
b) The Laplace Transform of U(t- a) = ______. [CO1]

$$i)e^{-as} \quad ii) \frac{e^{-as}}{s} \quad iii) \frac{1}{s} \quad iv) \frac{1}{s^{2}}$$
c) The Laplace Transform of 2^{t} is ______. [CO1]

$$i)\frac{1}{s-2} \quad ii) \frac{1}{s-ln2} \quad iii) \frac{1}{s^{2}} \quad iv) \frac{1}{s(s-2)}$$
d) The value of Curl (r) = ______. [CO2]

 $\partial^2 f$

i)
$$e^t$$
 ii) e^{-t} *iii)* e^{t^2} *iv)* non of these.
The vector field is irrotational, if curl(v)=______. [CO2]

i) fourier cosine integral ii) fourier sine integral iii) fourier integral iv) non of these. [CO3] i) The transformation between line integral and double integral is _

i) Green's Theorem ii) Divergence Theorem iii) stokes theorem iv) non of these. [CO4] j) The unit normal vector of a plane parallel to z = 1 is [CO4]

i) I ii) J iii) k iv) 0

(15 x 2 = 30 MARKS)

Answer any fifteen questions from the following.

1.	State First shifting property.	[CO1]
2.	State Unit step function.	[CO1]
3.	Find $L^{-1}\left(\frac{e^{-\pi s_s}}{s^2+1}\right)$	[CO1]
4.	Find L (sin wt * cos wt).	[CO1]
5.	Find the Laplace Transform of t u(t-1).	[CO1]
6.	Write the formula for Fourier Sine Integral of a function.	[CO2]
7.	Write the formula for Fourier Transformation of a function.	[CO2]

PART-B

B.TECH

M18001002

		M18001002
8.	Find the Fourier Sine Integral of $f(x) = \begin{cases} k & 0 < x < 1 \\ 0 & x > 1 \end{cases}$	[CO2]
9.	Find the Fourier Cosine Transform of $f(x) = \begin{cases} 1 & 0 < x < 1 \\ -0 & x > 1 \end{cases}$	[CO2]
10.	Find the Fourier Transformation of $f(x) = f(x) = \begin{cases} -1 & -a < x < a \\ 0 & otherwise \end{cases}$	[CO2]
12. 13. 14. 15. 16. 17. 18.	Find the angle between two vectors $I + J + K$ and $I + 2J + 3K$ Find the unit normal to the surface $x^2 + y^2 = 25$ at (3,4). Find $\nabla^2 f$ where $f = e^{2x} sin2y$ Find the length of the curve $r(t) = t \ I + t^3 \ J$ at (1,1,1) Find the curl of the vector $r = x \ I + y \ J + z \ K$ Find the Parametric form of $x^2 + y^2 + z^2 = 1$ State Stokes theorem. Find the normal vector of $r(u,v)=[a \cos u, b \sin v, u]$ Evaluate $\iint_R dxdy$, where $R: x^2 + y^2 = 4$	[CO3] [CO3] [CO3] [CO3] [CO3] [CO4] [CO4] [CO4] [CO4]
	Evaluate $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} z \ dxdydz$	[CO4]
	PART-C	$(6 \times 5 = 30 \text{ MARKS})$
Sectio		
1.	Find the Inverse Laplace Transform of $\ln \frac{s^2+1}{(s-1)^2}$	[CO1]
2.	Find the Laplace Transform of $te^{-t}\cos t$	[CO1]
3.	Find the Fourier cosine integral of $f(x) = \begin{cases} x^2 & 0 < x < 1 \\ 0 & x > 1 \end{cases}$	[CO2]
4.	Find the Fourier Transform of $f(x) = \begin{cases} e^x & -a < x < a \\ 0 & otherwise \end{cases}$	[CO2]
5.	Find the directional derivative of $f = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ at the point (3,0,4) in the direction	rection
	√ <i>x</i> ⁻ + <i>y</i> ⁻ +2 ⁻	[CO3]
6.	Determine the constant a, so that the vector $V = (x+3y)I + (y-2z)J + (x+az) K$ is S	Solenoidal. [CO3]
7. 8.	Find $\int_c f(r)ds$, where $f = \sqrt{2 + x^2 + 3y^2}$, $c: r = [t, t, t^2]$, $0 \le t \le$ Find the area of x = a cos t, y = b sin t, $0 \le t \le 2\pi$ by using line integral.	≤ 3 [CO4] [CO4]
Sectio		x 15 = 30 MARKS)
	Solve the integral equation $y(t) = te^t - 2e^t \int_0^t e^{-u} y(u) du$	[CO1]
b)	Using Convolution Theorem , Find the Inverse Laplace Transform of $\frac{s}{(s^2+a^2)^2}$	[CO1]
2. a)	Prove that $\int_0^\infty \frac{w^3 \sin wx}{w^4 + 4} dw = \frac{\pi}{2} e^{-\pi} \cos x, \ x \ge 0$	[CO2]
b)	Find the Fourier Transform of $f(x) =\begin{cases} e^x & \text{if } x > 0\\ 0 & \text{if } x < 0 \end{cases}$	[CO2]
3. a)		[CO3]
3. a)	Find the scalar potential function from the vector field $V = \begin{bmatrix} y \\ z \end{bmatrix}, \frac{x}{z}, \frac{-xy}{z^2}$ Prove that div(uxv) = v curl u - u curl v	[CO3] [CO3]
3. a) b)	Find the scalar potential function from the vector field $V = \begin{bmatrix} y \\ z \end{bmatrix}$, $\frac{x}{z}$, $\frac{-xy}{z^2}$	[CO3]
3. a) b) 4 a)C	Find the scalar potential function from the vector field $V = \begin{bmatrix} y \\ z \end{bmatrix}$, $\frac{x}{z}$, $\frac{-xy}{z^2}$ Prove that div(u x v) = v curl u - u curl v	[CO3]