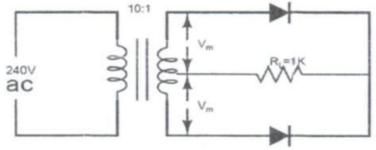
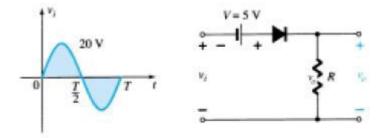
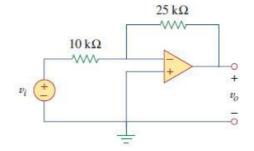
210	Reg	istration No :	210	210	210
	Total N	umber of Pages : 03		B.Tech. 15BE2101	
210	210		ck Examination 2017-18 FELECTRONICS 210	210	210
			EIE, AERO, AUTO,		
		MED, BIOTECH, CHEM, CIVIL, CS SHION, FAT, IEE, IT, ITE, MANUFA METTAMIN, MINERAL, MINI Time	E, ECE, EEE, EIE, ELECTRICAL, E AC, MANUTECH, MARINE, MECH, I NG, MME, PE, PLASTIC, TEXTILE 9: 3 Hours	•	
			Marks : 100		
210	210		DDE : C920 210	210	210
Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.					
	Part – A (Answer all the questions)				
	Q1	Answer the following questions: m	ultiple type or dash fill-up type :	(2 x 10)	
210	ą)	In a BJT with β = 100, α equals	210 210	210	210
		(a) 0.99 (b)	o) 99		
		` '	d) 1.01		
	b)	Avalanche breakdown results basical(a) impact ionisation(b) strong electric field across the jur			
		(c) emission of electrons			
210		(d) rise in temperature	210 210	210	210
210	c)	For an Op-amp with negative feedback	ck, the output is		210
		(a) equal to the input (b)	o) increased		
		(c) fed back to the inverting input (c)	· · · · · · · · · · · · · · · · · · ·		
	d)	d) Which number system has a base	of 16		
		(a) Decimal (b)	o) Octal		
		` '	d) Binary		
e) e)gates are known as universal gate.					040
210	f) A constant current source supplies a current of 300 mA to a load of 1 Kohm. 10				210
		When the Load is changed to 100 oh			
		• • • • • • • • • • • • • • • • • • • •	o) 300 mAmp		
		• • • • • • • • • • • • • • • • • • • •	d) 600 mAmp		
	g)	The Op-amp can amplify			
		• • • • • • • • • • • • • • • • • • • •	o) d.c. signals only		
	b)	· · ·	d) neither d.c. nor a.c. signals		
210	b)	·		210	210
		•	o) Negative		
	i\	(c) Neither positive nor negative (c)			
	 i) The forward voltage drop across a silicon diode is about (a) 1.2V (b) 0.3V 				
		• •	d) 1.0V		
	j)	The doping level in a zener diode is .	,		
	J <i>)</i>		o) less than		
210	210	210 210	d) none of the above	210	210


Q2 Answer the following questions: short answer types:

 (2×10)


- a) Give the load line of a BJT amplifier if $v_{cc} = +9v$ and $R_c = 1.8K\Omega$.
- b) Explain Early effect of BJT.
- c) Differentiate between zener breakdown and avalanche breakdown.
- d) What is Bark Hausen criteria?
- e) Difference between Practical Op-amp and Ideal Op-amp.
- f) Draw the V-I characteristic of Zener diode.
- g) Implement Half Adder using AND and OR gate.
- h) State De-Morgan's theorem.
- i) What is the relationship between period of waveform and frequency?
- j) What will appear on the screen of CRO when time base voltage is given to Y-plate and pulse is given to X-plate?justify?

Part - B (Answer any four questions)


- Q3 a) With neat circuit diagram explain the working principle of Full wave center-tapped transformer rectifier and derive the expression for its efficiency. (10)
 - b) In the center tap fullwave rectifier shown below, find i)peak, average, rms value of load current ii) ripple factor iii) efficiency iv)PIV

- Q4 a) With neat diagram explain the formation of a potential barrier in a p-n junction and show the polarity of the Barrier potential and draw the V-I characteristic of p-n junction diode.
 - b) Determine the output waveform of the circuit given below. Assume ideal (5)

- **Q5 a)** Realize Op-amp as adder, subtractor, buffer, integrator and differentiator circuit. (10)
 - **b)** In the fig. given below if $v_i = 0.5V$, calculate the output voltage v_o and the current in $10K\Omega$ resistor. (5)

