010	010	010	010	010	010	
210	210	210	210	210	210	
Pogistr	ation No :					
Registi						
Total Nu	umber of Pages :	: 03			B.Te	ch.
210	²¹⁰ 2 nd C	emester Regula	r / Back Exami	notion 2017.19	210 PAP2A1	101
	2 36					
	CH: AEIE, AERO, CTRICAL, ENV, MINER	ETC, FAT, IEE, AL, MINING, MI Tin Max	IT, MANUFAC, ME, PE, PLAST ne : 3 Hours Marks : 100	MANUTECH, M	NECH, METTA,	IE,
210	210 Answor Par	Q.C ۲۰۰ t-A which is co	CODE : C803	210 210 Four from P	210 Part-R	
	The fig	jures in the righ Answer all parts	nt hand margin s of a question	indicate marks at a place		
Q1	Answer the follo		swer all the ques	<u>stions)</u>	(2 x 1	0)
a)	The photoelectric	effect signifies the	Э	010		•,
210	(iii) both(i)&(ii)	ture of light	210	210	210	
b)	(iv) none of the Condition for obt		Fraunhofer diffra	action patterns d	lue to a	
	single slit is					
	(i) $d\cos\theta = \frac{1}{2}$					
210	(ii) $d\sin\theta = \frac{1}{\lambda}$ (iii) $d\sin\theta = \frac{1}{\lambda}$ (iv) $d\sin\theta = \frac{1}{\lambda}$	$m\lambda$	210	210	210	
c)	In a Bi prism exp	eriment, 5mm wid				
	1.0m away from separation betwee	en the two cohere	nt resources is	-	A0. The	
d)	(i) 1.0mm (ii) The de Broglie w	0.1mm (iii) 0.1 ave length of a p			erqv E _k is	
210	given by	-210	210	210	210	
	(i) $\lambda = hc/\sqrt{[E_k(E_k + (iii))]}$		(ii) $\lambda = hc/\sqrt{[2E_k(t_k)]^2}$			
e)	(iii) $\lambda = hc/\sqrt{E_k}$ For a simple cubic		(iv) $\lambda = hc/\sqrt{[2E_k]}$			
	(i) 0.52 (ii)	0.74 (iii) 0	.68 (iv) 0.5			
f)	The equation of c (i) Non-conse	ontinuity for charg				
			static electric fiel	d 210	210	
210						
210	(iii) conservati	on of charge for a	non-static electri			
210 g)	(iii) conservati (iv) non-destru The wavelength o When it is in open	on of charge for a uctive nature of ch of a HE-Ne LASE ation, the number	non-static electri arge R generating 3.14 of photons emitte	c field 47mW power is63 ed per minute is …		
	(iii) conservati (iv) non-destru The wavelength o	on of charge for a uctive nature of ch of a HE-Ne LASE ation, the number 3.14x10 ⁻¹⁹ (iii) 0.4	non-static electri arge R generating 3.14 of photons emitte 5x10 ⁹ (iv) 6x10	c field 47mW power is63 ed per minute is 9 ¹⁷		
g)	 (iii) conservati (iv) non-destru The wavelength of When it is in open (i) 4.79x10¹⁴ (ii) A mathematical function if the product 	on of charge for a active nature of ch of a HE-Ne LASE ation, the number 3.14x10 ⁻¹⁹ (iii) 0.4 unction can be co	non-static electri arge R generating 3.14 of photons emitte 5x10 ⁹ (iv) 6x10	c field 47mW power is63 ed per minute is 9 ¹⁷		

i)	In a Compton scattering process, the wavelength of the incident beam changes from .5 nm to when scattered at an angle 45 [°] . (i) 1.49nm (ii) 0.78nm (iii) 0.5nm (iv) none of these		
j) 210	For a high damping factor, the resonance(i) is very high210210(ii) is unaffected(iii) is flatter(iv) varies linearly		21
Q2	Answer the following questions:	(2 x 10)	
a)	Graphically show the variation of phase difference between the oscillator and driving force with frequency for two representative damping forces.		
²¹⁰ b) c)	State de Alembert's principle. 210 210 210 210 210 210 210 210 210 210		21
d) e)	Write two applications of LASER. The refractive indices of for core and cladding for a step index fibre are 1.52 and 1.41 respectively. Calculate the numerical aperture of the fibre.		
f)	Write in SI unit system, the integral and differential forms of Gauss' law in electrostatics in a dielectric medium.		
²¹⁰ g)	The wave function of a system is a linear combination of the eigen function $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ and φ_5 1 1 1 1 1 1		21
b)	$= \frac{1}{\sqrt{3}}\varphi_1 + \frac{1}{\sqrt{3}}\varphi_2 + \frac{1}{\sqrt{6}}\varphi_3 + \frac{1}{\sqrt{24}}\varphi_4 + \frac{1}{\sqrt{8}}\varphi_5$		
h)	A parallel plate capacitor having circular plates of radius 5.5 cm is being charged. Calculate the displacement current if the rate of change of electric field between the plates is 1.5x10 ¹⁰ V/m.s.		
210 i)	Mass of proton is approximately 1840 times of the mass ₀ of an electron. Calculate the ratio of the de Broglie wavelengths of electron and proton if both the particles move with same velocity.		21
j)	State and explain Heisenberg's uncertainty principle.		
	Part – B (Answer any four questions)		
Q3 a)	two pendulums of equal masses coupled together by a spring and hence find out the normal mode frequencies. Discuss the in phase mode and out of	(10)	21
b)	phase mode of oscillations. Apply Lagrange's equation of motion to obtain the differential equation for a one dimensional harmonic oscillator.	(5)	
Q4 a)	Derive an expression for fringe spacing in a two source interference pattern.	(5)	
b)	With neat diagrams, explain in detail, the determination of wavelength of light using Fresnel's Biprism.	(7)	
²¹⁰ C)	The diameter of the central zone of a zone plate is 2.3mm. If a point source of light of wavelength $\lambda = 5893 A^0$ is placed at a distance of 6.0m from the zone plate, calculate the position of the first image.	(3)	21
Q5 a)	What is band theory of solids?Discuss the classification of materials on the basis of band theory of solids.	(8)	
b)	State and explain Bragg's law.	(3)	
210 C)	X-ray of wavelength $1.4 A^0$ is found to be Bragg reflected from (111) plane of an fcc crystal structure. If the lattice parameter of the crystal is $5A^0$, find the angle at which the X-ray is incident on the (111) plane of the crystal.	(4)	21

Q6	a) b)	What does LASER operation and work Write five difference	ing of a Ruby LA	SER.		•	(10) (5)	
Q7 ₂₁₀	a)	Define curl of a vec	tor field. Write its	s physical signification of the second seco	ance. $\frac{1}{2}\hat{i} + \frac{z^2}{2}\hat{i} + \frac{2yz}{2}\hat{k}$.	210	(7)	210
	b)	State Ampere's ci Ampere's law in free	rcuital law. Writ e space in SI uni	e the integral a t.	and differential f	forms of	(4)	
Q8	c) a)	Distinguish between Derive the condition	on for obtaining	·		iffraction	(4) (6)	
210	b)	pattern due to a single slit. Calculate the probability of finding a particle in the region $2 \le x \le 4$, if the wavefunction for the particle is given by $\psi = 0.25e^{2ix}$.						
	c)	Using the uncertain oscillator.				narmonic	(5)	
Q9	a)	With a neat labe interferometer.	-				(5) (4)	
210	b) c)	plane from the intercepts made by this plane along the three axes. 210						210
	d)	energy expectation Write some of the a		tical fibers over c	onventional wires	S.	(3)	
210		210	210	210	210	210		210
210		210	210	210	210	210		210
210		210	210	210	210	210		210

210 210 210 210 210 210 210 210 210