Re	210 210 210 210 210 210 210 210 210 210		210
Total I	Number of Pages : 02	B.Tech. BS1102	
2	2 nd Semester Back Examination 2017-18		210
BI	¹⁰ PHYSICS - I 210 210 BRANCH : AEIE, AERO, AUTO, DMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, ME METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE Time : 3 Hours	•	
	Max Marks : 70		
2	10 210 210 Q.CODE: C922 210 210		210
	Answer Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks. Answer all parts of a question at a place.		
Q1	Answer the following questions:	(2 x 10)	
a) In a two slit interference with monochromatic light, fringes are obtained on a	ι <i>γ</i>	
	screen placed at same distance from the slits. If the screen is moved by $5x10^{-2}$ m towards the slits, the change in fringe width is $3x10^{-5}$ m. If the distance between the slit is 10^{-3} m, calculate the wavelength of light used.		210
b	 When two displacements represented by y₁ = asinωt and y₂ = bcosωt are superimposed the motion is (i) Not a simple harmonic (ii) Simple harmonic with amplitude ^a/_b 		
2	(iii) Simple harmonic with amplitude $\frac{b}{a}$ 210 210 210 (iv) Simple harmonic with amplitude $\sqrt{a^2 + b^2}$		210
с) The equation of motion of a point particle of mass 0.1 kg executing SHM is		
	given by $y = 0.1 sin \left(4t + \frac{\pi}{4}\right)$; where 'y' is in meter and 't' is in second. Find the		
	kinetic energy of the particle when it passes through the mean position.		
d 2			210
	(iii) either partially polarized or elliptically polarized; (iv) only circularly polarized.		
e			
f) Calculate the minimum uncertainty in the velocity of an electron confined to a box of 10^{-8} m length. ($m_e = 9.1 \times 10^{-31} kg$, $\hbar = 1.05 \times 10^{-34} Js$)		210
g			
h	= 0 and x = 2; the wave function $\phi(x) = 0$ elsewhere, Find the probability that the particle can be found between x = 1.0 and x = 1.5.		
i)			
j	State Gauss divergence theorem and write the mathematical form.		210

10		210	210	210	210	210	210		210			
	Q2	a)	Write down the equat 'm' and obtain its solu	tion in different	condition.			(7)				
		b)	frequency of oscillatio	scillation, if ω_0 is the natural frequency and ω is the forced oscillation, draw Amplitude-Frequency response graph for zero damping and high damping in a single plot.				(3)				
10	Q3	a) What is double refraction? Distinguish between ordinary ray and extraordina ray.						(5)	210			
		b)	What is Fresnel's Bip to determine the wave				method	(5)				
10	Q4	a) b) ²¹⁰	Write down the Maxwe Find the magnetic fie components of the ele	eld B of the ele	ectromagnetic wa	ve in free spac	e if the ot.	(5) (5)	210			
	Q5	a)	What is plane diffrac	ction grating?	With necessary t	necessary theory, explain how to (7) aromatic light using plane diffraction						
		b)	Find the directional de	erivative of $\phi=$	$x^2yz + 2xz^2$ at (1,	, -1, -1).		(3)				
10	Q6	a)	Explain the uncertaint 14 m, show that ele	ectron cannot				(6)	210			
		b)	$10^{-31} kg, \hbar \stackrel{\text{\tiny def}}{=} 1.05 \times 1$ Show that the expect given by $\psi_n(x) = \begin{cases} A s \\ c \end{cases}$ is zero	tation value of	linear momentum	for the wave f	function	(4)				
	Q7	a)	zer and	(3)								
10	 analyzer. 210 210 210 210 210 210 210 210 b) Derive pointing theorem and write its physical significance. c) A particle is in one-dimensional infinitely deep potential well of width L. Graphically show the probability density of the particle in the ground and first excited state. 											
10	Q8	a) b)	Write short answer of Zone plate Black body radiation s	pectrum	210	210	210	5 x 2)	210			
		c) d)	Displacement Current Coupled Oscillation									
10		210	210	210	210	210	210		210			

0 210 210 210 210 210 210 210