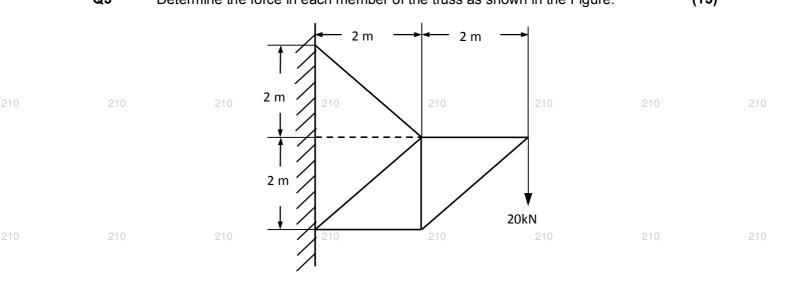

210	210	210	210	210	210	210	210
	Registr	ation No :					
	Total N	umber of Pages	: 04				ech.
10	210	210	210 2 nd Semester Ba	210 ck Examinatio	210 on 2017-18	210 15BE	2104 210
				ECHANICS	011 2017-10		
	ELI	CH : AEIE, AERO ECTRICAL, ENV, E, MECH, METTA	, ETC, FASHION	, FAT, IEE, IT,	ITE, MANUFA	C, MANUTECH,	·
		, ,	Tim	e: 3 Hours		,	
10	210	210	010	Marks : 100	210	210	210
		Answer Pa	Q.Co rt-A which is cor	DDE : C1037	any four from	Part-R	
			gures in the righ				
			Answer all parts	-			
			Part A (Ana	wer all the que	stions)		
	Q1	Answer the follo	wing questions:	wer an the que	<u>istions)</u>	(2)	(10)
0	₂₁₀ a)		ncels the effect of	the force system	m acting on a bo	•	210
		as					
		(i) Resultant (iii) Balancing Fo	orce	(ii) Equilibrant(iv) Neutral For			
	b)		om an ideal sm	· · ·		along the	
	,			nt of contact.			
	c)		Q is placed on an rizontal is less thar	•	•		
	0.1.0	(i) Be in motion		(ii) be in equili	brium		0.1.0
0	210	(iii) move downw		(iv) move upwa	ards	210	210
	d)	-	um of moments of option		•	•	
			n their plane of act e same moment ce				
		(i) Superposition	n Theorem	(ii) Theorem of	f Transmissibility		
		(iii) Varignon's T		(iv) None of the			
	e)		sections for analys can be cut through				
0	210	010	should only cut thr	· 010	010	wns can ²¹⁰	210
			rom three equation	•		waa aan ba	
			should only cut to rom three equation		•	wns can be	
		(iv) None of thes		e el equilibrium	•		
	f)		e act on a body,				
			et force which is di ersely proportional				
0	210	(i) newton's 2nd			st law of motion	210	210
		(iii) newton's 3rd		(iv) None of the			
	g)	A body of mass f to stop it in 3 seco		in the velocity o	of 15 m/s. The to	rce required	
		(i) 50N		(ii) 100N			
		(iii) 75N		(iv) 170N			
	h)	A bullet of mass 3			zle velocity 90m/s	s. If its mass	
0	210	(i) -0.34m/s	ecoil of the gun will	(ii) 0.54m/s	210	210	210
		(iii) -0.54m/s		(iv) 0.34m/s			

210	210	210	210	210	210	210	210
210	i) ₂₁₀ j)	A brick of mass 10 circle with 5m/s sp (i) 3N (iii) 4N A ball of mass m r at rest. The lighter restitution is (i) $\frac{1}{2}$ (iii) 2/3	eed. The tension noving at a spee	in rope will be : (ii) 2.5N (iv) 1.5N d of v collides w	vith another ball of collision. ²¹ The coe	mass 3m	210
	Q2 a)	Answer the follow State and explain I				(2 x	: 10)
210	b) 210	Draw the Free Boo	ly Diagram of the			210	210
210	210 c) d) e) f) g) h) i)	State theorem of T Write the application What do you unde Write Principle of C What do you unde Write the equation What do you unde	ons of 1 st theorem rstand by Limiting Conservation of N rstand by an idea of work-energy for rstand by Coeffic	equilibrium? lomentum. I system? or rectilinear motion ient of Restitutio	n?	210	210
210	j) 210	What is the adva Second Law of mo		bert's Principle	as compared to 210	Newton's 210	210
	Q3 a)	Determine the ma weight Q = 1000 N a 50 mm curb as s	gnitude of the for l and radius r = 2	00 mm which wi	the centre C of the		0)
210	210	210		30° 210	210	210	210
	b)	Two forces are act	ing at a point as	shown in the figu	ire. Find the resulta	ant. (5)
210	210	210	210 60° 400 M	800 N ₂₁₀ 	210	210	210
210	210	210	210	210	210	210	210



Q4 a) Find the centroid of the area between the parabola $y = x^2/a$ and straight line y = (10) x as shown in the figure below.

210 **b)**

Q5 Determine the force in each member of the truss as shown in the Figure. (15)

State and prove Parallel Axis theorem.

Q6 a) Two blocks connected by a horizontal link AB are supported on two rough planes as shown in the figure. The coefficient of friction for block A on the horizontal plane is $\mu = 0.4$. The angle of friction for block B on the inclined plane is $\varphi = 15^{\circ}$. What is the smallest weight W of the block A for which the equilibrium of the system exists. 210 210 210 210

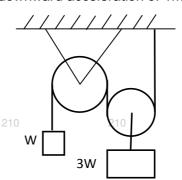
b)	Explain virtual dis	placement, virtua	I work and Princip	ple of Virtual W	ork with a	(5)	
210 210	neat sketch.	210	210	210	210		210

210 210

210

210

210


0

(5)

210

	210	210	210	210	210	210	210
--	-----	-----	-----	-----	-----	-----	-----

- Q7 a) A ball is thrown vertically upward from a point on a tower located 25m above the ground. Knowing that the ball strikes the ground 3s after release, determine the speed with which the ball (s) was thrown upward (b) strikes the ground.
 b) Two weights W and 3W are supported in a vertical plane by a string and pulley (10)
 - **b)** Two weights W and 3W are supported in a vertical plane by a string and pulley arranged as shown in figure. Find an additional weight Q applied on the left block W which will give a downward acceleration of 1m/s² to the weight W.

- Q8 a) A block of weight 12N falls from a height of 0.75m on top of a spring. Determine (7.5) the spring constant if it is compressed by 150mm to bring the weight momentarily to rest.
 - ²¹⁰ b) A shot is fired with a bullet with an initial velocity of 40m/s from a point 20m in (7.5) front of a vertical wall 10m height. Find the angle of projection with horizontal to enable the shot to just clear the wall.
- Q9 a) A spherical ball of 60kg moving with a velocity of 20m/s collides with another ball of mass 45kg moving with 1m/s in the same direction. If e=0.5, find the final velocities after collision.

b) A pulley weighs 500 N and has a radius of 0.75 m. A block weighing 400 N is supported by inextensible wire wound around the pulley. Determine the velocity of the block 2 sec after it is released from rest. Assume the motion is under constant acceleration.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210

210 210 210 210 210 210 210 210	2	210	210	210	210	210	210 210	210
---------------------------------	---	-----	-----	-----	-----	-----	---------	-----

210

(10)